File size: 55,632 Bytes
0ce1ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 |
from __future__ import print_function, unicode_literals, absolute_import, division
import numpy as np
import sys
import warnings
import math
from tqdm import tqdm
from collections import namedtuple
from pathlib import Path
import threading
import functools
import scipy.ndimage as ndi
import numbers
from csbdeep.models.base_model import BaseModel
from csbdeep.utils.tf import export_SavedModel, keras_import, IS_TF_1, CARETensorBoard
import tensorflow as tf
K = keras_import('backend')
Sequence = keras_import('utils', 'Sequence')
Adam = keras_import('optimizers', 'Adam')
ReduceLROnPlateau, TensorBoard = keras_import('callbacks', 'ReduceLROnPlateau', 'TensorBoard')
from csbdeep.utils import _raise, backend_channels_last, axes_check_and_normalize, axes_dict, load_json, save_json
from csbdeep.internals.predict import tile_iterator, total_n_tiles
from csbdeep.internals.train import RollingSequence
from csbdeep.data import Resizer
from ..sample_patches import get_valid_inds
from ..nms import _ind_prob_thresh
from ..utils import _is_power_of_2, _is_floatarray, optimize_threshold
# TODO: helper function to check if receptive field of cnn is sufficient for object sizes in GT
def generic_masked_loss(mask, loss, weights=1, norm_by_mask=True, reg_weight=0, reg_penalty=K.abs):
def _loss(y_true, y_pred):
actual_loss = K.mean(mask * weights * loss(y_true, y_pred), axis=-1)
norm_mask = (K.mean(mask) + K.epsilon()) if norm_by_mask else 1
if reg_weight > 0:
reg_loss = K.mean((1-mask) * reg_penalty(y_pred), axis=-1)
return actual_loss / norm_mask + reg_weight * reg_loss
else:
return actual_loss / norm_mask
return _loss
def masked_loss(mask, penalty, reg_weight, norm_by_mask):
loss = lambda y_true, y_pred: penalty(y_true - y_pred)
return generic_masked_loss(mask, loss, reg_weight=reg_weight, norm_by_mask=norm_by_mask)
# TODO: should we use norm_by_mask=True in the loss or only in a metric?
# previous 2D behavior was norm_by_mask=False
# same question for reg_weight? use 1e-4 (as in 3D) or 0 (as in 2D)?
def masked_loss_mae(mask, reg_weight=0, norm_by_mask=True):
return masked_loss(mask, K.abs, reg_weight=reg_weight, norm_by_mask=norm_by_mask)
def masked_loss_mse(mask, reg_weight=0, norm_by_mask=True):
return masked_loss(mask, K.square, reg_weight=reg_weight, norm_by_mask=norm_by_mask)
def masked_metric_mae(mask):
def relevant_mae(y_true, y_pred):
return masked_loss(mask, K.abs, reg_weight=0, norm_by_mask=True)(y_true, y_pred)
return relevant_mae
def masked_metric_mse(mask):
def relevant_mse(y_true, y_pred):
return masked_loss(mask, K.square, reg_weight=0, norm_by_mask=True)(y_true, y_pred)
return relevant_mse
def kld(y_true, y_pred):
y_true = K.clip(y_true, K.epsilon(), 1)
y_pred = K.clip(y_pred, K.epsilon(), 1)
return K.mean(K.binary_crossentropy(y_true, y_pred) - K.binary_crossentropy(y_true, y_true), axis=-1)
def masked_loss_iou(mask, reg_weight=0, norm_by_mask=True):
def iou_loss(y_true, y_pred):
axis = -1 if backend_channels_last() else 1
# y_pred can be negative (since not constrained) -> 'inter' can be very large for y_pred << 0
# - clipping y_pred values at 0 can lead to vanishing gradients
# - 'K.sign(y_pred)' term fixes issue by enforcing that y_pred values >= 0 always lead to larger 'inter' (lower loss)
inter = K.mean(K.sign(y_pred)*K.square(K.minimum(y_true,y_pred)), axis=axis)
union = K.mean(K.square(K.maximum(y_true,y_pred)), axis=axis)
iou = inter/(union+K.epsilon())
iou = K.expand_dims(iou,axis)
loss = 1. - iou # + 0.005*K.abs(y_true-y_pred)
return loss
return generic_masked_loss(mask, iou_loss, reg_weight=reg_weight, norm_by_mask=norm_by_mask)
def masked_metric_iou(mask, reg_weight=0, norm_by_mask=True):
def iou_metric(y_true, y_pred):
axis = -1 if backend_channels_last() else 1
y_pred = K.maximum(0., y_pred)
inter = K.mean(K.square(K.minimum(y_true,y_pred)), axis=axis)
union = K.mean(K.square(K.maximum(y_true,y_pred)), axis=axis)
iou = inter/(union+K.epsilon())
loss = K.expand_dims(iou,axis)
return loss
return generic_masked_loss(mask, iou_metric, reg_weight=reg_weight, norm_by_mask=norm_by_mask)
def weighted_categorical_crossentropy(weights, ndim):
""" ndim = (2,3) """
axis = -1 if backend_channels_last() else 1
shape = [1]*(ndim+2)
shape[axis] = len(weights)
weights = np.broadcast_to(weights, shape)
weights = K.constant(weights)
def weighted_cce(y_true, y_pred):
# ignore pixels that have y_true (prob_class) < 0
mask = K.cast(y_true>=0, K.floatx())
y_pred /= K.sum(y_pred+K.epsilon(), axis=axis, keepdims=True)
y_pred = K.clip(y_pred, K.epsilon(), 1. - K.epsilon())
loss = - K.sum(weights*mask*y_true*K.log(y_pred), axis = axis)
return loss
return weighted_cce
class StarDistDataBase(RollingSequence):
def __init__(self, X, Y, n_rays, grid, batch_size, patch_size, length,
n_classes=None, classes=None,
use_gpu=False, sample_ind_cache=True, maxfilter_patch_size=None, augmenter=None, foreground_prob=0):
super().__init__(data_size=len(X), batch_size=batch_size, length=length, shuffle=True)
if isinstance(X, (np.ndarray, tuple, list)):
X = [x.astype(np.float32, copy=False) for x in X]
# sanity checks
len(X)==len(Y) and len(X)>0 or _raise(ValueError("X and Y can't be empty and must have same length"))
if classes is None:
# set classes to None for all images (i.e. defaults to every object instance assigned the same class)
classes = (None,)*len(X)
else:
n_classes is not None or warnings.warn("Ignoring classes since n_classes is None")
len(classes)==len(X) or _raise(ValueError("X and classes must have same length"))
self.n_classes, self.classes = n_classes, classes
nD = len(patch_size)
assert nD in (2,3)
x_ndim = X[0].ndim
assert x_ndim in (nD,nD+1)
if isinstance(X, (np.ndarray, tuple, list)) and \
isinstance(Y, (np.ndarray, tuple, list)):
all(y.ndim==nD and x.ndim==x_ndim and x.shape[:nD]==y.shape for x,y in zip(X,Y)) or _raise(ValueError("images and masks should have corresponding shapes/dimensions"))
all(x.shape[:nD]>=tuple(patch_size) for x in X) or _raise(ValueError("Some images are too small for given patch_size {patch_size}".format(patch_size=patch_size)))
if x_ndim == nD:
self.n_channel = None
else:
self.n_channel = X[0].shape[-1]
if isinstance(X, (np.ndarray, tuple, list)):
assert all(x.shape[-1]==self.n_channel for x in X)
assert 0 <= foreground_prob <= 1
self.X, self.Y = X, Y
# self.batch_size = batch_size
self.n_rays = n_rays
self.patch_size = patch_size
self.ss_grid = (slice(None),) + tuple(slice(0, None, g) for g in grid)
self.grid = tuple(grid)
self.use_gpu = bool(use_gpu)
if augmenter is None:
augmenter = lambda *args: args
callable(augmenter) or _raise(ValueError("augmenter must be None or callable"))
self.augmenter = augmenter
self.foreground_prob = foreground_prob
if self.use_gpu:
from gputools import max_filter
self.max_filter = lambda y, patch_size: max_filter(y.astype(np.float32), patch_size)
else:
from scipy.ndimage.filters import maximum_filter
self.max_filter = lambda y, patch_size: maximum_filter(y, patch_size, mode='constant')
self.maxfilter_patch_size = maxfilter_patch_size if maxfilter_patch_size is not None else self.patch_size
self.sample_ind_cache = sample_ind_cache
self._ind_cache_fg = {}
self._ind_cache_all = {}
self.lock = threading.Lock()
def get_valid_inds(self, k, foreground_prob=None):
if foreground_prob is None:
foreground_prob = self.foreground_prob
foreground_only = np.random.uniform() < foreground_prob
_ind_cache = self._ind_cache_fg if foreground_only else self._ind_cache_all
if k in _ind_cache:
inds = _ind_cache[k]
else:
patch_filter = (lambda y,p: self.max_filter(y, self.maxfilter_patch_size) > 0) if foreground_only else None
inds = get_valid_inds(self.Y[k], self.patch_size, patch_filter=patch_filter)
if self.sample_ind_cache:
with self.lock:
_ind_cache[k] = inds
if foreground_only and len(inds[0])==0:
# no foreground pixels available
return self.get_valid_inds(k, foreground_prob=0)
return inds
def channels_as_tuple(self, x):
if self.n_channel is None:
return (x,)
else:
return tuple(x[...,i] for i in range(self.n_channel))
class StarDistBase(BaseModel):
def __init__(self, config, name=None, basedir='.'):
super().__init__(config=config, name=name, basedir=basedir)
threshs = dict(prob=None, nms=None)
if basedir is not None:
try:
threshs = load_json(str(self.logdir / 'thresholds.json'))
print("Loading thresholds from 'thresholds.json'.")
if threshs.get('prob') is None or not (0 < threshs.get('prob') < 1):
print("- Invalid 'prob' threshold (%s), using default value." % str(threshs.get('prob')))
threshs['prob'] = None
if threshs.get('nms') is None or not (0 < threshs.get('nms') < 1):
print("- Invalid 'nms' threshold (%s), using default value." % str(threshs.get('nms')))
threshs['nms'] = None
except FileNotFoundError:
if config is None and len(tuple(self.logdir.glob('*.h5'))) > 0:
print("Couldn't load thresholds from 'thresholds.json', using default values. "
"(Call 'optimize_thresholds' to change that.)")
self.thresholds = dict (
prob = 0.5 if threshs['prob'] is None else threshs['prob'],
nms = 0.4 if threshs['nms'] is None else threshs['nms'],
)
print("Using default values: prob_thresh={prob:g}, nms_thresh={nms:g}.".format(prob=self.thresholds.prob, nms=self.thresholds.nms))
@property
def thresholds(self):
return self._thresholds
def _is_multiclass(self):
return (self.config.n_classes is not None)
def _parse_classes_arg(self, classes, length):
""" creates a proper classes tuple from different possible "classes" arguments in model.train()
classes can be
"auto" -> all objects will be assigned to the first foreground class (unless n_classes is None)
single integer -> all objects will be assigned that class
tuple, list, ndarray -> do nothing (needs to be of given length)
returns a tuple of given length
"""
if isinstance(classes, str):
classes == "auto" or _raise(ValueError(f"classes = '{classes}': only 'auto' supported as string argument for classes"))
if self.config.n_classes is None:
classes = None
elif self.config.n_classes == 1:
classes = (1,)*length
else:
raise ValueError("using classes = 'auto' for n_classes > 1 not supported")
elif isinstance(classes, (tuple, list, np.ndarray)):
len(classes) == length or _raise(ValueError(f"len(classes) should be {length}!"))
else:
raise ValueError("classes should either be 'auto' or a list of scalars/label dicts")
return classes
@thresholds.setter
def thresholds(self, d):
self._thresholds = namedtuple('Thresholds',d.keys())(*d.values())
def prepare_for_training(self, optimizer=None):
"""Prepare for neural network training.
Compiles the model and creates
`Keras Callbacks <https://keras.io/callbacks/>`_ to be used for training.
Note that this method will be implicitly called once by :func:`train`
(with default arguments) if not done so explicitly beforehand.
Parameters
----------
optimizer : obj or None
Instance of a `Keras Optimizer <https://keras.io/optimizers/>`_ to be used for training.
If ``None`` (default), uses ``Adam`` with the learning rate specified in ``config``.
"""
if optimizer is None:
optimizer = Adam(self.config.train_learning_rate)
masked_dist_loss = {'mse': masked_loss_mse,
'mae': masked_loss_mae,
'iou': masked_loss_iou,
}[self.config.train_dist_loss]
prob_loss = 'binary_crossentropy'
def split_dist_true_mask(dist_true_mask):
return tf.split(dist_true_mask, num_or_size_splits=[self.config.n_rays,-1], axis=-1)
def dist_loss(dist_true_mask, dist_pred):
dist_true, dist_mask = split_dist_true_mask(dist_true_mask)
return masked_dist_loss(dist_mask, reg_weight=self.config.train_background_reg)(dist_true, dist_pred)
def dist_iou_metric(dist_true_mask, dist_pred):
dist_true, dist_mask = split_dist_true_mask(dist_true_mask)
return masked_metric_iou(dist_mask, reg_weight=0)(dist_true, dist_pred)
def relevant_mae(dist_true_mask, dist_pred):
dist_true, dist_mask = split_dist_true_mask(dist_true_mask)
return masked_metric_mae(dist_mask)(dist_true, dist_pred)
def relevant_mse(dist_true_mask, dist_pred):
dist_true, dist_mask = split_dist_true_mask(dist_true_mask)
return masked_metric_mse(dist_mask)(dist_true, dist_pred)
if self._is_multiclass():
prob_class_loss = weighted_categorical_crossentropy(self.config.train_class_weights, ndim=self.config.n_dim)
loss = [prob_loss, dist_loss, prob_class_loss]
else:
loss = [prob_loss, dist_loss]
self.keras_model.compile(optimizer, loss = loss,
loss_weights = list(self.config.train_loss_weights),
metrics = {'prob': kld,
'dist': [relevant_mae, relevant_mse, dist_iou_metric]})
self.callbacks = []
if self.basedir is not None:
self.callbacks += self._checkpoint_callbacks()
if self.config.train_tensorboard:
if IS_TF_1:
self.callbacks.append(CARETensorBoard(log_dir=str(self.logdir), prefix_with_timestamp=False, n_images=3, write_images=True, prob_out=False))
else:
self.callbacks.append(TensorBoard(log_dir=str(self.logdir/'logs'), write_graph=False, profile_batch=0))
if self.config.train_reduce_lr is not None:
rlrop_params = self.config.train_reduce_lr
if 'verbose' not in rlrop_params:
rlrop_params['verbose'] = True
# TF2: add as first callback to put 'lr' in the logs for TensorBoard
self.callbacks.insert(0,ReduceLROnPlateau(**rlrop_params))
self._model_prepared = True
def _predict_setup(self, img, axes, normalizer, n_tiles, show_tile_progress, predict_kwargs):
""" Shared setup code between `predict` and `predict_sparse` """
if n_tiles is None:
n_tiles = [1]*img.ndim
try:
n_tiles = tuple(n_tiles)
img.ndim == len(n_tiles) or _raise(TypeError())
except TypeError:
raise ValueError("n_tiles must be an iterable of length %d" % img.ndim)
all(np.isscalar(t) and 1<=t and int(t)==t for t in n_tiles) or _raise(
ValueError("all values of n_tiles must be integer values >= 1"))
n_tiles = tuple(map(int,n_tiles))
axes = self._normalize_axes(img, axes)
axes_net = self.config.axes
_permute_axes = self._make_permute_axes(axes, axes_net)
x = _permute_axes(img) # x has axes_net semantics
channel = axes_dict(axes_net)['C']
self.config.n_channel_in == x.shape[channel] or _raise(ValueError())
axes_net_div_by = self._axes_div_by(axes_net)
grid = tuple(self.config.grid)
len(grid) == len(axes_net)-1 or _raise(ValueError())
grid_dict = dict(zip(axes_net.replace('C',''),grid))
normalizer = self._check_normalizer_resizer(normalizer, None)[0]
resizer = StarDistPadAndCropResizer(grid=grid_dict)
x = normalizer.before(x, axes_net)
x = resizer.before(x, axes_net, axes_net_div_by)
if not _is_floatarray(x):
warnings.warn("Predicting on non-float input... ( forgot to normalize? )")
def predict_direct(x):
ys = self.keras_model.predict(x[np.newaxis], **predict_kwargs)
return tuple(y[0] for y in ys)
def tiling_setup():
assert np.prod(n_tiles) > 1
tiling_axes = axes_net.replace('C','') # axes eligible for tiling
x_tiling_axis = tuple(axes_dict(axes_net)[a] for a in tiling_axes) # numerical axis ids for x
axes_net_tile_overlaps = self._axes_tile_overlap(axes_net)
# hack: permute tiling axis in the same way as img -> x was permuted
_n_tiles = _permute_axes(np.empty(n_tiles,bool)).shape
(all(_n_tiles[i] == 1 for i in range(x.ndim) if i not in x_tiling_axis) or
_raise(ValueError("entry of n_tiles > 1 only allowed for axes '%s'" % tiling_axes)))
sh = [s//grid_dict.get(a,1) for a,s in zip(axes_net,x.shape)]
sh[channel] = None
def create_empty_output(n_channel, dtype=np.float32):
sh[channel] = n_channel
return np.empty(sh,dtype)
if callable(show_tile_progress):
progress, _show_tile_progress = show_tile_progress, True
else:
progress, _show_tile_progress = tqdm, show_tile_progress
n_block_overlaps = [int(np.ceil(overlap/blocksize)) for overlap, blocksize
in zip(axes_net_tile_overlaps, axes_net_div_by)]
num_tiles_used = total_n_tiles(x, _n_tiles, block_sizes=axes_net_div_by, n_block_overlaps=n_block_overlaps)
tile_generator = progress(tile_iterator(x, _n_tiles, block_sizes=axes_net_div_by, n_block_overlaps=n_block_overlaps),
disable=(not _show_tile_progress), total=num_tiles_used)
return tile_generator, tuple(sh), create_empty_output
return x, axes, axes_net, axes_net_div_by, _permute_axes, resizer, n_tiles, grid, grid_dict, channel, predict_direct, tiling_setup
def _predict_generator(self, img, axes=None, normalizer=None, n_tiles=None, show_tile_progress=True, **predict_kwargs):
"""Predict.
Parameters
----------
img : :class:`numpy.ndarray`
Input image
axes : str or None
Axes of the input ``img``.
``None`` denotes that axes of img are the same as denoted in the config.
normalizer : :class:`csbdeep.data.Normalizer` or None
(Optional) normalization of input image before prediction.
Note that the default (``None``) assumes ``img`` to be already normalized.
n_tiles : iterable or None
Out of memory (OOM) errors can occur if the input image is too large.
To avoid this problem, the input image is broken up into (overlapping) tiles
that are processed independently and re-assembled.
This parameter denotes a tuple of the number of tiles for every image axis (see ``axes``).
``None`` denotes that no tiling should be used.
show_tile_progress: bool or callable
If boolean, indicates whether to show progress (via tqdm) during tiled prediction.
If callable, must be a drop-in replacement for tqdm.
show_tile_progress: bool
Whether to show progress during tiled prediction.
predict_kwargs: dict
Keyword arguments for ``predict`` function of Keras model.
Returns
-------
(:class:`numpy.ndarray`, :class:`numpy.ndarray`, [:class:`numpy.ndarray`])
Returns the tuple (`prob`, `dist`, [`prob_class`]) of per-pixel object probabilities and star-convex polygon/polyhedra distances.
In multiclass prediction mode, `prob_class` is the probability map for each of the 1+'n_classes' classes (first class is background)
"""
x, axes, axes_net, axes_net_div_by, _permute_axes, resizer, n_tiles, grid, grid_dict, channel, predict_direct, tiling_setup = \
self._predict_setup(img, axes, normalizer, n_tiles, show_tile_progress, predict_kwargs)
if np.prod(n_tiles) > 1:
tile_generator, output_shape, create_empty_output = tiling_setup()
prob = create_empty_output(1)
dist = create_empty_output(self.config.n_rays)
if self._is_multiclass():
prob_class = create_empty_output(self.config.n_classes+1)
result = (prob, dist, prob_class)
else:
result = (prob, dist)
for tile, s_src, s_dst in tile_generator:
# predict_direct -> prob, dist, [prob_class if multi_class]
result_tile = predict_direct(tile)
# account for grid
s_src = [slice(s.start//grid_dict.get(a,1),s.stop//grid_dict.get(a,1)) for s,a in zip(s_src,axes_net)]
s_dst = [slice(s.start//grid_dict.get(a,1),s.stop//grid_dict.get(a,1)) for s,a in zip(s_dst,axes_net)]
# prob and dist have different channel dimensionality than image x
s_src[channel] = slice(None)
s_dst[channel] = slice(None)
s_src, s_dst = tuple(s_src), tuple(s_dst)
# print(s_src,s_dst)
for part, part_tile in zip(result, result_tile):
part[s_dst] = part_tile[s_src]
yield # yield None after each processed tile
else:
# predict_direct -> prob, dist, [prob_class if multi_class]
result = predict_direct(x)
result = [resizer.after(part, axes_net) for part in result]
# result = (prob, dist) for legacy or (prob, dist, prob_class) for multiclass
# prob
result[0] = np.take(result[0],0,axis=channel)
# dist
result[1] = np.maximum(1e-3, result[1]) # avoid small dist values to prevent problems with Qhull
result[1] = np.moveaxis(result[1],channel,-1)
if self._is_multiclass():
# prob_class
result[2] = np.moveaxis(result[2],channel,-1)
# last "yield" is the actual output that would have been "return"ed if this was a regular function
yield tuple(result)
@functools.wraps(_predict_generator)
def predict(self, *args, **kwargs):
# return last "yield"ed value of generator
r = None
for r in self._predict_generator(*args, **kwargs):
pass
return r
def _predict_sparse_generator(self, img, prob_thresh=None, axes=None, normalizer=None, n_tiles=None, show_tile_progress=True, b=2, **predict_kwargs):
""" Sparse version of model.predict()
Returns
-------
(prob, dist, [prob_class], points) flat list of probs, dists, (optional prob_class) and points
"""
if prob_thresh is None: prob_thresh = self.thresholds.prob
x, axes, axes_net, axes_net_div_by, _permute_axes, resizer, n_tiles, grid, grid_dict, channel, predict_direct, tiling_setup = \
self._predict_setup(img, axes, normalizer, n_tiles, show_tile_progress, predict_kwargs)
def _prep(prob, dist):
prob = np.take(prob,0,axis=channel)
dist = np.moveaxis(dist,channel,-1)
dist = np.maximum(1e-3, dist)
return prob, dist
proba, dista, pointsa, prob_class = [],[],[], []
if np.prod(n_tiles) > 1:
tile_generator, output_shape, create_empty_output = tiling_setup()
sh = list(output_shape)
sh[channel] = 1;
proba, dista, pointsa, prob_classa = [], [], [], []
for tile, s_src, s_dst in tile_generator:
results_tile = predict_direct(tile)
# account for grid
s_src = [slice(s.start//grid_dict.get(a,1),s.stop//grid_dict.get(a,1)) for s,a in zip(s_src,axes_net)]
s_dst = [slice(s.start//grid_dict.get(a,1),s.stop//grid_dict.get(a,1)) for s,a in zip(s_dst,axes_net)]
s_src[channel] = slice(None)
s_dst[channel] = slice(None)
s_src, s_dst = tuple(s_src), tuple(s_dst)
prob_tile, dist_tile = results_tile[:2]
prob_tile, dist_tile = _prep(prob_tile[s_src], dist_tile[s_src])
bs = list((b if s.start==0 else -1, b if s.stop==_sh else -1) for s,_sh in zip(s_dst, sh))
bs.pop(channel)
inds = _ind_prob_thresh(prob_tile, prob_thresh, b=bs)
proba.extend(prob_tile[inds].copy())
dista.extend(dist_tile[inds].copy())
_points = np.stack(np.where(inds), axis=1)
offset = list(s.start for i,s in enumerate(s_dst))
offset.pop(channel)
_points = _points + np.array(offset).reshape((1,len(offset)))
_points = _points * np.array(self.config.grid).reshape((1,len(self.config.grid)))
pointsa.extend(_points)
if self._is_multiclass():
p = results_tile[2][s_src].copy()
p = np.moveaxis(p,channel,-1)
prob_classa.extend(p[inds])
yield # yield None after each processed tile
else:
# predict_direct -> prob, dist, [prob_class if multi_class]
results = predict_direct(x)
prob, dist = results[:2]
prob, dist = _prep(prob, dist)
inds = _ind_prob_thresh(prob, prob_thresh, b=b)
proba = prob[inds].copy()
dista = dist[inds].copy()
_points = np.stack(np.where(inds), axis=1)
pointsa = (_points * np.array(self.config.grid).reshape((1,len(self.config.grid))))
if self._is_multiclass():
p = np.moveaxis(results[2],channel,-1)
prob_classa = p[inds].copy()
proba = np.asarray(proba)
dista = np.asarray(dista).reshape((-1,self.config.n_rays))
pointsa = np.asarray(pointsa).reshape((-1,self.config.n_dim))
idx = resizer.filter_points(x.ndim, pointsa, axes_net)
proba = proba[idx]
dista = dista[idx]
pointsa = pointsa[idx]
# last "yield" is the actual output that would have been "return"ed if this was a regular function
if self._is_multiclass():
prob_classa = np.asarray(prob_classa).reshape((-1,self.config.n_classes+1))
prob_classa = prob_classa[idx]
yield proba, dista, prob_classa, pointsa
else:
prob_classa = None
yield proba, dista, pointsa
@functools.wraps(_predict_sparse_generator)
def predict_sparse(self, *args, **kwargs):
# return last "yield"ed value of generator
r = None
for r in self._predict_sparse_generator(*args, **kwargs):
pass
return r
def _predict_instances_generator(self, img, axes=None, normalizer=None,
sparse=True,
prob_thresh=None, nms_thresh=None,
scale=None,
n_tiles=None, show_tile_progress=True,
verbose=False,
return_labels=True,
predict_kwargs=None, nms_kwargs=None,
overlap_label=None, return_predict=False):
"""Predict instance segmentation from input image.
Parameters
----------
img : :class:`numpy.ndarray`
Input image
axes : str or None
Axes of the input ``img``.
``None`` denotes that axes of img are the same as denoted in the config.
normalizer : :class:`csbdeep.data.Normalizer` or None
(Optional) normalization of input image before prediction.
Note that the default (``None``) assumes ``img`` to be already normalized.
sparse: bool
If true, aggregate probabilities/distances sparsely during tiled
prediction to save memory (recommended).
prob_thresh : float or None
Consider only object candidates from pixels with predicted object probability
above this threshold (also see `optimize_thresholds`).
nms_thresh : float or None
Perform non-maximum suppression that considers two objects to be the same
when their area/surface overlap exceeds this threshold (also see `optimize_thresholds`).
scale: None or float or iterable
Scale the input image internally by this factor and rescale the output accordingly.
All spatial axes (X,Y,Z) will be scaled if a scalar value is provided.
Alternatively, multiple scale values (compatible with input `axes`) can be used
for more fine-grained control (scale values for non-spatial axes must be 1).
n_tiles : iterable or None
Out of memory (OOM) errors can occur if the input image is too large.
To avoid this problem, the input image is broken up into (overlapping) tiles
that are processed independently and re-assembled.
This parameter denotes a tuple of the number of tiles for every image axis (see ``axes``).
``None`` denotes that no tiling should be used.
show_tile_progress: bool
Whether to show progress during tiled prediction.
verbose: bool
Whether to print some info messages.
return_labels: bool
Whether to create a label image, otherwise return None in its place.
predict_kwargs: dict
Keyword arguments for ``predict`` function of Keras model.
nms_kwargs: dict
Keyword arguments for non-maximum suppression.
overlap_label: scalar or None
if not None, label the regions where polygons overlap with that value
return_predict: bool
Also return the outputs of :func:`predict` (in a separate tuple)
If True, implies sparse = False
Returns
-------
(:class:`numpy.ndarray`, dict), (optional: return tuple of :func:`predict`)
Returns a tuple of the label instances image and also
a dictionary with the details (coordinates, etc.) of all remaining polygons/polyhedra.
"""
if predict_kwargs is None:
predict_kwargs = {}
if nms_kwargs is None:
nms_kwargs = {}
if return_predict and sparse:
sparse = False
warnings.warn("Setting sparse to False because return_predict is True")
nms_kwargs.setdefault("verbose", verbose)
_axes = self._normalize_axes(img, axes)
_axes_net = self.config.axes
_permute_axes = self._make_permute_axes(_axes, _axes_net)
_shape_inst = tuple(s for s,a in zip(_permute_axes(img).shape, _axes_net) if a != 'C')
if scale is not None:
if isinstance(scale, numbers.Number):
scale = tuple(scale if a in 'XYZ' else 1 for a in _axes)
scale = tuple(scale)
len(scale) == len(_axes) or _raise(ValueError(f"scale {scale} must be of length {len(_axes)}, i.e. one value for each of the axes {_axes}"))
for s,a in zip(scale,_axes):
s > 0 or _raise(ValueError("scale values must be greater than 0"))
(s in (1,None) or a in 'XYZ') or warnings.warn(f"replacing scale value {s} for non-spatial axis {a} with 1")
scale = tuple(s if a in 'XYZ' else 1 for s,a in zip(scale,_axes))
verbose and print(f"scaling image by factors {scale} for axes {_axes}")
img = ndi.zoom(img, scale, order=1)
yield 'predict' # indicate that prediction is starting
res = None
if sparse:
for res in self._predict_sparse_generator(img, axes=axes, normalizer=normalizer, n_tiles=n_tiles,
prob_thresh=prob_thresh, show_tile_progress=show_tile_progress, **predict_kwargs):
if res is None:
yield 'tile' # yield 'tile' each time a tile has been processed
else:
for res in self._predict_generator(img, axes=axes, normalizer=normalizer, n_tiles=n_tiles,
show_tile_progress=show_tile_progress, **predict_kwargs):
if res is None:
yield 'tile' # yield 'tile' each time a tile has been processed
res = tuple(res) + (None,)
if self._is_multiclass():
prob, dist, prob_class, points = res
else:
prob, dist, points = res
prob_class = None
yield 'nms' # indicate that non-maximum suppression is starting
res_instances = self._instances_from_prediction(_shape_inst, prob, dist,
points=points,
prob_class=prob_class,
prob_thresh=prob_thresh,
nms_thresh=nms_thresh,
scale=(None if scale is None else dict(zip(_axes,scale))),
return_labels=return_labels,
overlap_label=overlap_label,
**nms_kwargs)
# last "yield" is the actual output that would have been "return"ed if this was a regular function
if return_predict:
yield res_instances, tuple(res[:-1])
else:
yield res_instances
@functools.wraps(_predict_instances_generator)
def predict_instances(self, *args, **kwargs):
# the reason why the actual computation happens as a generator function
# (in '_predict_instances_generator') is that the generator is called
# from the stardist napari plugin, which has its benefits regarding
# control flow and progress display. however, typical use cases should
# almost always use this function ('predict_instances'), and shouldn't
# even notice (thanks to @functools.wraps) that it wraps the generator
# function. note that similar reasoning applies to 'predict' and
# 'predict_sparse'.
# return last "yield"ed value of generator
r = None
for r in self._predict_instances_generator(*args, **kwargs):
pass
return r
# def _predict_instances_old(self, img, axes=None, normalizer=None,
# sparse = False,
# prob_thresh=None, nms_thresh=None,
# n_tiles=None, show_tile_progress=True,
# verbose = False,
# predict_kwargs=None, nms_kwargs=None, overlap_label=None):
# """
# old version, should be removed....
# """
# if predict_kwargs is None:
# predict_kwargs = {}
# if nms_kwargs is None:
# nms_kwargs = {}
# nms_kwargs.setdefault("verbose", verbose)
# _axes = self._normalize_axes(img, axes)
# _axes_net = self.config.axes
# _permute_axes = self._make_permute_axes(_axes, _axes_net)
# _shape_inst = tuple(s for s,a in zip(_permute_axes(img).shape, _axes_net) if a != 'C')
# res = self.predict(img, axes=axes, normalizer=normalizer,
# n_tiles=n_tiles,
# show_tile_progress=show_tile_progress,
# **predict_kwargs)
# res = tuple(res) + (None,)
# if self._is_multiclass():
# prob, dist, prob_class, points = res
# else:
# prob, dist, points = res
# prob_class = None
# return self._instances_from_prediction_old(_shape_inst, prob, dist,
# points = points,
# prob_class = prob_class,
# prob_thresh=prob_thresh,
# nms_thresh=nms_thresh,
# overlap_label=overlap_label,
# **nms_kwargs)
def predict_instances_big(self, img, axes, block_size, min_overlap, context=None,
labels_out=None, labels_out_dtype=np.int32, show_progress=True, **kwargs):
"""Predict instance segmentation from very large input images.
Intended to be used when `predict_instances` cannot be used due to memory limitations.
This function will break the input image into blocks and process them individually
via `predict_instances` and assemble all the partial results. If used as intended, the result
should be the same as if `predict_instances` was used directly on the whole image.
**Important**: The crucial assumption is that all predicted object instances are smaller than
the provided `min_overlap`. Also, it must hold that: min_overlap + 2*context < block_size.
Example
-------
>>> img.shape
(20000, 20000)
>>> labels, polys = model.predict_instances_big(img, axes='YX', block_size=4096,
min_overlap=128, context=128, n_tiles=(4,4))
Parameters
----------
img: :class:`numpy.ndarray` or similar
Input image
axes: str
Axes of the input ``img`` (such as 'YX', 'ZYX', 'YXC', etc.)
block_size: int or iterable of int
Process input image in blocks of the provided shape.
(If a scalar value is given, it is used for all spatial image dimensions.)
min_overlap: int or iterable of int
Amount of guaranteed overlap between blocks.
(If a scalar value is given, it is used for all spatial image dimensions.)
context: int or iterable of int, or None
Amount of image context on all sides of a block, which is discarded.
If None, uses an automatic estimate that should work in many cases.
(If a scalar value is given, it is used for all spatial image dimensions.)
labels_out: :class:`numpy.ndarray` or similar, or None, or False
numpy array or similar (must be of correct shape) to which the label image is written.
If None, will allocate a numpy array of the correct shape and data type ``labels_out_dtype``.
If False, will not write the label image (useful if only the dictionary is needed).
labels_out_dtype: str or dtype
Data type of returned label image if ``labels_out=None`` (has no effect otherwise).
show_progress: bool
Show progress bar for block processing.
kwargs: dict
Keyword arguments for ``predict_instances``.
Returns
-------
(:class:`numpy.ndarray` or False, dict)
Returns the label image and a dictionary with the details (coordinates, etc.) of the polygons/polyhedra.
"""
from ..big import _grid_divisible, BlockND, OBJECT_KEYS#, repaint_labels
from ..matching import relabel_sequential
n = img.ndim
axes = axes_check_and_normalize(axes, length=n)
grid = self._axes_div_by(axes)
axes_out = self._axes_out.replace('C','')
shape_dict = dict(zip(axes,img.shape))
shape_out = tuple(shape_dict[a] for a in axes_out)
if context is None:
context = self._axes_tile_overlap(axes)
if np.isscalar(block_size): block_size = n*[block_size]
if np.isscalar(min_overlap): min_overlap = n*[min_overlap]
if np.isscalar(context): context = n*[context]
block_size, min_overlap, context = list(block_size), list(min_overlap), list(context)
assert n == len(block_size) == len(min_overlap) == len(context)
if 'C' in axes:
# single block for channel axis
i = axes_dict(axes)['C']
# if (block_size[i], min_overlap[i], context[i]) != (None, None, None):
# print("Ignoring values of 'block_size', 'min_overlap', and 'context' for channel axis " +
# "(set to 'None' to avoid this warning).", file=sys.stderr, flush=True)
block_size[i] = img.shape[i]
min_overlap[i] = context[i] = 0
block_size = tuple(_grid_divisible(g, v, name='block_size', verbose=False) for v,g,a in zip(block_size, grid,axes))
min_overlap = tuple(_grid_divisible(g, v, name='min_overlap', verbose=False) for v,g,a in zip(min_overlap,grid,axes))
context = tuple(_grid_divisible(g, v, name='context', verbose=False) for v,g,a in zip(context, grid,axes))
# print(f"input: shape {img.shape} with axes {axes}")
print(f'effective: block_size={block_size}, min_overlap={min_overlap}, context={context}', flush=True)
for a,c,o in zip(axes,context,self._axes_tile_overlap(axes)):
if c < o:
print(f"{a}: context of {c} is small, recommended to use at least {o}", flush=True)
# create block cover
blocks = BlockND.cover(img.shape, axes, block_size, min_overlap, context, grid)
if np.isscalar(labels_out) and bool(labels_out) is False:
labels_out = None
else:
if labels_out is None:
labels_out = np.zeros(shape_out, dtype=labels_out_dtype)
else:
labels_out.shape == shape_out or _raise(ValueError(f"'labels_out' must have shape {shape_out} (axes {axes_out})."))
polys_all = {}
# problem_ids = []
label_offset = 1
kwargs_override = dict(axes=axes, overlap_label=None, return_labels=True, return_predict=False)
if show_progress:
kwargs_override['show_tile_progress'] = False # disable progress for predict_instances
for k,v in kwargs_override.items():
if k in kwargs: print(f"changing '{k}' from {kwargs[k]} to {v}", flush=True)
kwargs[k] = v
blocks = tqdm(blocks, disable=(not show_progress))
# actual computation
for block in blocks:
labels, polys = self.predict_instances(block.read(img, axes=axes), **kwargs)
labels = block.crop_context(labels, axes=axes_out)
labels, polys = block.filter_objects(labels, polys, axes=axes_out)
# TODO: relabel_sequential is not very memory-efficient (will allocate memory proportional to label_offset)
# this should not change the order of labels
labels = relabel_sequential(labels, label_offset)[0]
# labels, fwd_map, _ = relabel_sequential(labels, label_offset)
# if len(incomplete) > 0:
# problem_ids.extend([fwd_map[i] for i in incomplete])
# if show_progress:
# blocks.set_postfix_str(f"found {len(problem_ids)} problematic {'object' if len(problem_ids)==1 else 'objects'}")
if labels_out is not None:
block.write(labels_out, labels, axes=axes_out)
for k,v in polys.items():
polys_all.setdefault(k,[]).append(v)
label_offset += len(polys['prob'])
del labels
polys_all = {k: (np.concatenate(v) if k in OBJECT_KEYS else v[0]) for k,v in polys_all.items()}
# if labels_out is not None and len(problem_ids) > 0:
# # if show_progress:
# # blocks.write('')
# # print(f"Found {len(problem_ids)} objects that violate the 'min_overlap' assumption.", file=sys.stderr, flush=True)
# repaint_labels(labels_out, problem_ids, polys_all, show_progress=False)
return labels_out, polys_all#, tuple(problem_ids)
def optimize_thresholds(self, X_val, Y_val, nms_threshs=[0.3,0.4,0.5], iou_threshs=[0.3,0.5,0.7], predict_kwargs=None, optimize_kwargs=None, save_to_json=True):
"""Optimize two thresholds (probability, NMS overlap) necessary for predicting object instances.
Note that the default thresholds yield good results in many cases, but optimizing
the thresholds for a particular dataset can further improve performance.
The optimized thresholds are automatically used for all further predictions
and also written to the model directory.
See ``utils.optimize_threshold`` for details and possible choices for ``optimize_kwargs``.
Parameters
----------
X_val : list of ndarray
(Validation) input images (must be normalized) to use for threshold tuning.
Y_val : list of ndarray
(Validation) label images to use for threshold tuning.
nms_threshs : list of float
List of overlap thresholds to be considered for NMS.
For each value in this list, optimization is run to find a corresponding prob_thresh value.
iou_threshs : list of float
List of intersection over union (IOU) thresholds for which
the (average) matching performance is considered to tune the thresholds.
predict_kwargs: dict
Keyword arguments for ``predict`` function of this class.
(If not provided, will guess value for `n_tiles` to prevent out of memory errors.)
optimize_kwargs: dict
Keyword arguments for ``utils.optimize_threshold`` function.
"""
if predict_kwargs is None:
predict_kwargs = {}
if optimize_kwargs is None:
optimize_kwargs = {}
def _predict_kwargs(x):
if 'n_tiles' in predict_kwargs:
return predict_kwargs
else:
return {**predict_kwargs, 'n_tiles': self._guess_n_tiles(x), 'show_tile_progress': False}
# only take first two elements of predict in case multi class is activated
Yhat_val = [self.predict(x, **_predict_kwargs(x))[:2] for x in X_val]
opt_prob_thresh, opt_measure, opt_nms_thresh = None, -np.inf, None
for _opt_nms_thresh in nms_threshs:
_opt_prob_thresh, _opt_measure = optimize_threshold(Y_val, Yhat_val, model=self, nms_thresh=_opt_nms_thresh, iou_threshs=iou_threshs, **optimize_kwargs)
if _opt_measure > opt_measure:
opt_prob_thresh, opt_measure, opt_nms_thresh = _opt_prob_thresh, _opt_measure, _opt_nms_thresh
opt_threshs = dict(prob=opt_prob_thresh, nms=opt_nms_thresh)
self.thresholds = opt_threshs
print(end='', file=sys.stderr, flush=True)
print("Using optimized values: prob_thresh={prob:g}, nms_thresh={nms:g}.".format(prob=self.thresholds.prob, nms=self.thresholds.nms))
if save_to_json and self.basedir is not None:
print("Saving to 'thresholds.json'.")
save_json(opt_threshs, str(self.logdir / 'thresholds.json'))
return opt_threshs
def _guess_n_tiles(self, img):
axes = self._normalize_axes(img, axes=None)
shape = list(img.shape)
if 'C' in axes:
del shape[axes_dict(axes)['C']]
b = self.config.train_batch_size**(1.0/self.config.n_dim)
n_tiles = [int(np.ceil(s/(p*b))) for s,p in zip(shape,self.config.train_patch_size)]
if 'C' in axes:
n_tiles.insert(axes_dict(axes)['C'],1)
return tuple(n_tiles)
def _normalize_axes(self, img, axes):
if axes is None:
axes = self.config.axes
assert 'C' in axes
if img.ndim == len(axes)-1 and self.config.n_channel_in == 1:
# img has no dedicated channel axis, but 'C' always part of config axes
axes = axes.replace('C','')
return axes_check_and_normalize(axes, img.ndim)
def _compute_receptive_field(self, img_size=None):
# TODO: good enough?
from scipy.ndimage import zoom
if img_size is None:
img_size = tuple(g*(128 if self.config.n_dim==2 else 64) for g in self.config.grid)
if np.isscalar(img_size):
img_size = (img_size,) * self.config.n_dim
img_size = tuple(img_size)
# print(img_size)
assert all(_is_power_of_2(s) for s in img_size)
mid = tuple(s//2 for s in img_size)
x = np.zeros((1,)+img_size+(self.config.n_channel_in,), dtype=np.float32)
z = np.zeros_like(x)
x[(0,)+mid+(slice(None),)] = 1
y = self.keras_model.predict(x)[0][0,...,0]
y0 = self.keras_model.predict(z)[0][0,...,0]
grid = tuple((np.array(x.shape[1:-1])/np.array(y.shape)).astype(int))
assert grid == self.config.grid
y = zoom(y, grid,order=0)
y0 = zoom(y0,grid,order=0)
ind = np.where(np.abs(y-y0)>0)
return [(m-np.min(i), np.max(i)-m) for (m,i) in zip(mid,ind)]
def _axes_tile_overlap(self, query_axes):
query_axes = axes_check_and_normalize(query_axes)
try:
self._tile_overlap
except AttributeError:
self._tile_overlap = self._compute_receptive_field()
overlap = dict(zip(
self.config.axes.replace('C',''),
tuple(max(rf) for rf in self._tile_overlap)
))
return tuple(overlap.get(a,0) for a in query_axes)
def export_TF(self, fname=None, single_output=True, upsample_grid=True):
"""Export model to TensorFlow's SavedModel format that can be used e.g. in the Fiji plugin
Parameters
----------
fname : str
Path of the zip file to store the model
If None, the default path "<modeldir>/TF_SavedModel.zip" is used
single_output: bool
If set, concatenates the two model outputs into a single output (note: this is currently mandatory for further use in Fiji)
upsample_grid: bool
If set, upsamples the output to the input shape (note: this is currently mandatory for further use in Fiji)
"""
Concatenate, UpSampling2D, UpSampling3D, Conv2DTranspose, Conv3DTranspose = keras_import('layers', 'Concatenate', 'UpSampling2D', 'UpSampling3D', 'Conv2DTranspose', 'Conv3DTranspose')
Model = keras_import('models', 'Model')
if self.basedir is None and fname is None:
raise ValueError("Need explicit 'fname', since model directory not available (basedir=None).")
if self._is_multiclass():
warnings.warn("multi-class mode not supported yet, removing classification output from exported model")
grid = self.config.grid
prob = self.keras_model.outputs[0]
dist = self.keras_model.outputs[1]
assert self.config.n_dim in (2,3)
if upsample_grid and any(g>1 for g in grid):
# CSBDeep Fiji plugin needs same size input/output
# -> we need to upsample the outputs if grid > (1,1)
# note: upsampling prob with a transposed convolution creates sparse
# prob output with less candidates than with standard upsampling
conv_transpose = Conv2DTranspose if self.config.n_dim==2 else Conv3DTranspose
upsampling = UpSampling2D if self.config.n_dim==2 else UpSampling3D
prob = conv_transpose(1, (1,)*self.config.n_dim,
strides=grid, padding='same',
kernel_initializer='ones', use_bias=False)(prob)
dist = upsampling(grid)(dist)
inputs = self.keras_model.inputs[0]
outputs = Concatenate()([prob,dist]) if single_output else [prob,dist]
csbdeep_model = Model(inputs, outputs)
fname = (self.logdir / 'TF_SavedModel.zip') if fname is None else Path(fname)
export_SavedModel(csbdeep_model, str(fname))
return csbdeep_model
class StarDistPadAndCropResizer(Resizer):
# TODO: check correctness
def __init__(self, grid, mode='reflect', **kwargs):
assert isinstance(grid, dict)
self.mode = mode
self.grid = grid
self.kwargs = kwargs
def before(self, x, axes, axes_div_by):
assert all(a%g==0 for g,a in zip((self.grid.get(a,1) for a in axes), axes_div_by))
axes = axes_check_and_normalize(axes,x.ndim)
def _split(v):
return 0, v # only pad at the end
self.pad = {
a : _split((div_n-s%div_n)%div_n)
for a, div_n, s in zip(axes, axes_div_by, x.shape)
}
x_pad = np.pad(x, tuple(self.pad[a] for a in axes), mode=self.mode, **self.kwargs)
self.padded_shape = dict(zip(axes,x_pad.shape))
if 'C' in self.padded_shape: del self.padded_shape['C']
return x_pad
def after(self, x, axes):
# axes can include 'C', which may not have been present in before()
axes = axes_check_and_normalize(axes,x.ndim)
assert all(s_pad == s * g for s,s_pad,g in zip(x.shape,
(self.padded_shape.get(a,_s) for a,_s in zip(axes,x.shape)),
(self.grid.get(a,1) for a in axes)))
# print(self.padded_shape)
# print(self.pad)
# print(self.grid)
crop = tuple (
slice(0, -(math.floor(p[1]/g)) if p[1]>=g else None)
for p,g in zip((self.pad.get(a,(0,0)) for a in axes),(self.grid.get(a,1) for a in axes))
)
# print(crop)
return x[crop]
def filter_points(self, ndim, points, axes):
""" returns indices of points inside crop region """
assert points.ndim==2
axes = axes_check_and_normalize(axes,ndim)
bounds = np.array(tuple(self.padded_shape[a]-self.pad[a][1] for a in axes if a.lower() in ('z','y','x')))
idx = np.where(np.all(points< bounds, 1))
return idx
def _tf_version_at_least(version_string="1.0.0"):
from packaging import version
return version.parse(tf.__version__) >= version.parse(version_string)
|