|
from __future__ import print_function, unicode_literals, absolute_import, division |
|
import numpy as np |
|
from time import time |
|
from .utils import _normalize_grid |
|
|
|
def _ind_prob_thresh(prob, prob_thresh, b=2): |
|
if b is not None and np.isscalar(b): |
|
b = ((b,b),)*prob.ndim |
|
|
|
ind_thresh = prob > prob_thresh |
|
if b is not None: |
|
_ind_thresh = np.zeros_like(ind_thresh) |
|
ss = tuple(slice(_bs[0] if _bs[0]>0 else None, |
|
-_bs[1] if _bs[1]>0 else None) for _bs in b) |
|
_ind_thresh[ss] = True |
|
ind_thresh &= _ind_thresh |
|
return ind_thresh |
|
|
|
|
|
def _non_maximum_suppression_old(coord, prob, grid=(1,1), b=2, nms_thresh=0.5, prob_thresh=0.5, verbose=False, max_bbox_search=True): |
|
"""2D coordinates of the polys that survive from a given prediction (prob, coord) |
|
|
|
prob.shape = (Ny,Nx) |
|
coord.shape = (Ny,Nx,2,n_rays) |
|
|
|
b: don't use pixel closer than b pixels to the image boundary |
|
|
|
returns retained points |
|
""" |
|
from .lib.stardist2d import c_non_max_suppression_inds_old |
|
|
|
|
|
|
|
assert prob.ndim == 2 |
|
assert coord.ndim == 4 |
|
grid = _normalize_grid(grid,2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = _ind_prob_thresh(prob, prob_thresh, b) |
|
|
|
polygons = coord[mask] |
|
scores = prob[mask] |
|
|
|
|
|
ind = np.argsort(scores)[::-1] |
|
survivors = np.zeros(len(ind), bool) |
|
polygons = polygons[ind] |
|
scores = scores[ind] |
|
|
|
if max_bbox_search: |
|
|
|
mapping = -np.ones(mask.shape,np.int32) |
|
mapping.flat[ np.flatnonzero(mask)[ind] ] = range(len(ind)) |
|
else: |
|
mapping = np.empty((0,0),np.int32) |
|
|
|
if verbose: |
|
t = time() |
|
|
|
survivors[ind] = c_non_max_suppression_inds_old(np.ascontiguousarray(polygons.astype(np.int32)), |
|
mapping, np.float32(nms_thresh), np.int32(max_bbox_search), |
|
np.int32(grid[0]), np.int32(grid[1]),np.int32(verbose)) |
|
|
|
if verbose: |
|
print("keeping %s/%s polygons" % (np.count_nonzero(survivors), len(polygons))) |
|
print("NMS took %.4f s" % (time() - t)) |
|
|
|
points = np.stack([ii[survivors] for ii in np.nonzero(mask)],axis=-1) |
|
return points |
|
|
|
|
|
def non_maximum_suppression(dist, prob, grid=(1,1), b=2, nms_thresh=0.5, prob_thresh=0.5, |
|
use_bbox=True, use_kdtree=True, verbose=False,cut=False): |
|
"""Non-Maximum-Supression of 2D polygons |
|
|
|
Retains only polygons whose overlap is smaller than nms_thresh |
|
|
|
dist.shape = (Ny,Nx, n_rays) |
|
prob.shape = (Ny,Nx) |
|
|
|
returns the retained points, probabilities, and distances: |
|
|
|
points, prob, dist = non_maximum_suppression(dist, prob, .... |
|
|
|
""" |
|
|
|
|
|
|
|
assert prob.ndim == 2 and dist.ndim == 3 and prob.shape == dist.shape[:2] |
|
dist = np.asarray(dist) |
|
prob = np.asarray(prob) |
|
n_rays = dist.shape[-1] |
|
|
|
grid = _normalize_grid(grid,2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = _ind_prob_thresh(prob, prob_thresh, b) |
|
points = np.stack(np.where(mask), axis=1) |
|
|
|
dist = dist[mask] |
|
scores = prob[mask] |
|
|
|
|
|
ind = np.argsort(scores)[::-1] |
|
if cut is True and ind.shape[0] > 20000: |
|
|
|
ind = ind[:round(ind.shape[0]*0.5)] |
|
dist = dist[ind] |
|
scores = scores[ind] |
|
points = points[ind] |
|
|
|
points = (points * np.array(grid).reshape((1,2))) |
|
|
|
if verbose: |
|
t = time() |
|
|
|
inds = non_maximum_suppression_inds(dist, points.astype(np.int32, copy=False), scores=scores, |
|
use_bbox=use_bbox, use_kdtree=use_kdtree, |
|
thresh=nms_thresh, verbose=verbose) |
|
|
|
if verbose: |
|
print("keeping %s/%s polygons" % (np.count_nonzero(inds), len(inds))) |
|
print("NMS took %.4f s" % (time() - t)) |
|
|
|
return points[inds], scores[inds], dist[inds] |
|
|
|
|
|
def non_maximum_suppression_sparse(dist, prob, points, b=2, nms_thresh=0.5, |
|
use_bbox=True, use_kdtree = True, verbose=False): |
|
"""Non-Maximum-Supression of 2D polygons from a list of dists, probs (scores), and points |
|
|
|
Retains only polyhedra whose overlap is smaller than nms_thresh |
|
|
|
dist.shape = (n_polys, n_rays) |
|
prob.shape = (n_polys,) |
|
points.shape = (n_polys,2) |
|
|
|
returns the retained instances |
|
|
|
(pointsi, probi, disti, indsi) |
|
|
|
with |
|
pointsi = points[indsi] ... |
|
|
|
""" |
|
|
|
|
|
|
|
dist = np.asarray(dist) |
|
prob = np.asarray(prob) |
|
points = np.asarray(points) |
|
n_rays = dist.shape[-1] |
|
|
|
assert dist.ndim == 2 and prob.ndim == 1 and points.ndim == 2 and \ |
|
points.shape[-1]==2 and len(prob) == len(dist) == len(points) |
|
|
|
verbose and print("predicting instances with nms_thresh = {nms_thresh}".format(nms_thresh=nms_thresh), flush=True) |
|
|
|
inds_original = np.arange(len(prob)) |
|
_sorted = np.argsort(prob)[::-1] |
|
probi = prob[_sorted] |
|
disti = dist[_sorted] |
|
pointsi = points[_sorted] |
|
inds_original = inds_original[_sorted] |
|
|
|
if verbose: |
|
print("non-maximum suppression...") |
|
t = time() |
|
|
|
inds = non_maximum_suppression_inds(disti, pointsi, scores=probi, thresh=nms_thresh, use_kdtree = use_kdtree, verbose=verbose) |
|
|
|
if verbose: |
|
print("keeping %s/%s polyhedra" % (np.count_nonzero(inds), len(inds))) |
|
print("NMS took %.4f s" % (time() - t)) |
|
|
|
return pointsi[inds], probi[inds], disti[inds], inds_original[inds] |
|
|
|
|
|
def non_maximum_suppression_inds(dist, points, scores, thresh=0.5, use_bbox=True, use_kdtree = True, verbose=1): |
|
""" |
|
Applies non maximum supression to ray-convex polygons given by dists and points |
|
sorted by scores and IoU threshold |
|
|
|
P1 will suppress P2, if IoU(P1,P2) > thresh |
|
|
|
with IoU(P1,P2) = Ainter(P1,P2) / min(A(P1),A(P2)) |
|
|
|
i.e. the smaller thresh, the more polygons will be supressed |
|
|
|
dist.shape = (n_poly, n_rays) |
|
point.shape = (n_poly, 2) |
|
score.shape = (n_poly,) |
|
|
|
returns indices of selected polygons |
|
""" |
|
|
|
from stardist.lib.stardist2d import c_non_max_suppression_inds |
|
|
|
assert dist.ndim == 2 |
|
assert points.ndim == 2 |
|
|
|
n_poly = dist.shape[0] |
|
|
|
if scores is None: |
|
scores = np.ones(n_poly) |
|
|
|
assert len(scores) == n_poly |
|
assert points.shape[0] == n_poly |
|
|
|
def _prep(x, dtype): |
|
return np.ascontiguousarray(x.astype(dtype, copy=False)) |
|
|
|
inds = c_non_max_suppression_inds(_prep(dist, np.float32), |
|
_prep(points, np.float32), |
|
int(use_kdtree), |
|
int(use_bbox), |
|
int(verbose), |
|
np.float32(thresh)) |
|
|
|
return inds |
|
|
|
|
|
|
|
|
|
|
|
def non_maximum_suppression_3d(dist, prob, rays, grid=(1,1,1), b=2, nms_thresh=0.5, prob_thresh=0.5, use_bbox=True, use_kdtree=True, verbose=False): |
|
"""Non-Maximum-Supression of 3D polyhedra |
|
|
|
Retains only polyhedra whose overlap is smaller than nms_thresh |
|
|
|
dist.shape = (Nz,Ny,Nx, n_rays) |
|
prob.shape = (Nz,Ny,Nx) |
|
|
|
returns the retained points, probabilities, and distances: |
|
|
|
points, prob, dist = non_maximum_suppression_3d(dist, prob, .... |
|
""" |
|
|
|
|
|
|
|
dist = np.asarray(dist) |
|
prob = np.asarray(prob) |
|
|
|
assert prob.ndim == 3 and dist.ndim == 4 and dist.shape[-1] == len(rays) and prob.shape == dist.shape[:3] |
|
|
|
grid = _normalize_grid(grid,3) |
|
|
|
verbose and print("predicting instances with prob_thresh = {prob_thresh} and nms_thresh = {nms_thresh}".format(prob_thresh=prob_thresh, nms_thresh=nms_thresh), flush=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ind_thresh = _ind_prob_thresh(prob, prob_thresh, b) |
|
points = np.stack(np.where(ind_thresh), axis=1) |
|
verbose and print("found %s candidates"%len(points)) |
|
probi = prob[ind_thresh] |
|
disti = dist[ind_thresh] |
|
|
|
_sorted = np.argsort(probi)[::-1] |
|
probi = probi[_sorted] |
|
disti = disti[_sorted] |
|
points = points[_sorted] |
|
|
|
verbose and print("non-maximum suppression...") |
|
points = (points * np.array(grid).reshape((1,3))) |
|
|
|
inds = non_maximum_suppression_3d_inds(disti, points, rays=rays, scores=probi, thresh=nms_thresh, |
|
use_bbox=use_bbox, use_kdtree = use_kdtree, |
|
verbose=verbose) |
|
|
|
verbose and print("keeping %s/%s polyhedra" % (np.count_nonzero(inds), len(inds))) |
|
return points[inds], probi[inds], disti[inds] |
|
|
|
|
|
def non_maximum_suppression_3d_sparse(dist, prob, points, rays, b=2, nms_thresh=0.5, use_kdtree = True, verbose=False): |
|
"""Non-Maximum-Supression of 3D polyhedra from a list of dists, probs and points |
|
|
|
Retains only polyhedra whose overlap is smaller than nms_thresh |
|
dist.shape = (n_polys, n_rays) |
|
prob.shape = (n_polys,) |
|
points.shape = (n_polys,3) |
|
|
|
returns the retained instances |
|
|
|
(pointsi, probi, disti, indsi) |
|
|
|
with |
|
pointsi = points[indsi] ... |
|
""" |
|
|
|
|
|
|
|
dist = np.asarray(dist) |
|
prob = np.asarray(prob) |
|
points = np.asarray(points) |
|
|
|
assert dist.ndim == 2 and prob.ndim == 1 and points.ndim == 2 and \ |
|
dist.shape[-1] == len(rays) and points.shape[-1]==3 and len(prob) == len(dist) == len(points) |
|
|
|
verbose and print("predicting instances with nms_thresh = {nms_thresh}".format(nms_thresh=nms_thresh), flush=True) |
|
|
|
inds_original = np.arange(len(prob)) |
|
_sorted = np.argsort(prob)[::-1] |
|
probi = prob[_sorted] |
|
disti = dist[_sorted] |
|
pointsi = points[_sorted] |
|
inds_original = inds_original[_sorted] |
|
|
|
verbose and print("non-maximum suppression...") |
|
|
|
inds = non_maximum_suppression_3d_inds(disti, pointsi, rays=rays, scores=probi, thresh=nms_thresh, use_kdtree = use_kdtree, verbose=verbose) |
|
|
|
verbose and print("keeping %s/%s polyhedra" % (np.count_nonzero(inds), len(inds))) |
|
return pointsi[inds], probi[inds], disti[inds], inds_original[inds] |
|
|
|
|
|
def non_maximum_suppression_3d_inds(dist, points, rays, scores, thresh=0.5, use_bbox=True, use_kdtree = True, verbose=1): |
|
""" |
|
Applies non maximum supression to ray-convex polyhedra given by dists and rays |
|
sorted by scores and IoU threshold |
|
|
|
P1 will suppress P2, if IoU(P1,P2) > thresh |
|
|
|
with IoU(P1,P2) = Ainter(P1,P2) / min(A(P1),A(P2)) |
|
|
|
i.e. the smaller thresh, the more polygons will be supressed |
|
|
|
dist.shape = (n_poly, n_rays) |
|
point.shape = (n_poly, 3) |
|
score.shape = (n_poly,) |
|
|
|
returns indices of selected polygons |
|
""" |
|
from .lib.stardist3d import c_non_max_suppression_inds |
|
|
|
assert dist.ndim == 2 |
|
assert points.ndim == 2 |
|
assert dist.shape[1] == len(rays) |
|
|
|
n_poly = dist.shape[0] |
|
|
|
if scores is None: |
|
scores = np.ones(n_poly) |
|
|
|
assert len(scores) == n_poly |
|
assert points.shape[0] == n_poly |
|
|
|
|
|
ind = np.argsort(scores)[::-1] |
|
survivors = np.ones(n_poly, bool) |
|
dist = dist[ind] |
|
points = points[ind] |
|
scores = scores[ind] |
|
|
|
def _prep(x, dtype): |
|
return np.ascontiguousarray(x.astype(dtype, copy=False)) |
|
|
|
if verbose: |
|
t = time() |
|
|
|
survivors[ind] = c_non_max_suppression_inds(_prep(dist, np.float32), |
|
_prep(points, np.float32), |
|
_prep(rays.vertices, np.float32), |
|
_prep(rays.faces, np.int32), |
|
_prep(scores, np.float32), |
|
int(use_bbox), |
|
int(use_kdtree), |
|
int(verbose), |
|
np.float32(thresh)) |
|
|
|
if verbose: |
|
print("NMS took %.4f s" % (time() - t)) |
|
|
|
return survivors |
|
|