Update README.md
Browse files
README.md
CHANGED
@@ -47,14 +47,18 @@ Here is how to use this model:
|
|
47 |
|
48 |
```python
|
49 |
|
|
|
50 |
from skimage import io, segmentation, morphology, measure, exposure
|
51 |
from sribd_cellseg_models import MultiStreamCellSegModel,ModelConfig
|
52 |
import numpy as np
|
53 |
import tifffile as tif
|
54 |
import requests
|
55 |
import torch
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
img_name = 'cell_00023.tiff'
|
58 |
def normalize_channel(img, lower=1, upper=99):
|
59 |
non_zero_vals = img[np.nonzero(img)]
|
60 |
percentiles = np.percentile(non_zero_vals, [lower, upper])
|
@@ -86,5 +90,8 @@ my_model.__init__(ModelConfig())
|
|
86 |
my_model.load_checkpoints(checkpoints)
|
87 |
with torch.no_grad():
|
88 |
output = my_model(pre_img_data)
|
|
|
|
|
|
|
89 |
|
90 |
```
|
|
|
47 |
|
48 |
```python
|
49 |
|
50 |
+
|
51 |
from skimage import io, segmentation, morphology, measure, exposure
|
52 |
from sribd_cellseg_models import MultiStreamCellSegModel,ModelConfig
|
53 |
import numpy as np
|
54 |
import tifffile as tif
|
55 |
import requests
|
56 |
import torch
|
57 |
+
from PIL import Image
|
58 |
+
from overlay import visualize_instances_map
|
59 |
+
import cv2
|
60 |
+
img_name = 'test_images/cell_00551.tiff'
|
61 |
|
|
|
62 |
def normalize_channel(img, lower=1, upper=99):
|
63 |
non_zero_vals = img[np.nonzero(img)]
|
64 |
percentiles = np.percentile(non_zero_vals, [lower, upper])
|
|
|
90 |
my_model.load_checkpoints(checkpoints)
|
91 |
with torch.no_grad():
|
92 |
output = my_model(pre_img_data)
|
93 |
+
overlay = visualize_instances_map(pre_img_data,star_label)
|
94 |
+
cv2.imwrite('prediction.png', cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR))
|
95 |
+
|
96 |
|
97 |
```
|