--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: lex-cross-encoder-mdeberta-v3-base-5neg results: [] --- # lex-cross-encoder-mdeberta-v3-base-5neg This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6811 - Precision: 0.2 - Recall: 1.0 - F2: 0.5556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F2 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.7455 | 1.0 | 1 | 0.6810 | 0.2 | 1.0 | 0.5556 | | 0.7455 | 2.0 | 2 | 0.6811 | 0.2 | 1.0 | 0.5556 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.15.2