Integrate with Sentence Transformers (#1)
Browse files- Integrate with Sentence Transformers (e6df3a094125f2d6c407df358e9e6c5809df7b20)
- Also add missing tags (87fc722db294c25b30352bf35394df48b8bfd737)
- 1_Pooling/config.json +9 -0
- README.md +21 -1
- config_sentence_transformers.json +7 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false
|
| 9 |
+
}
|
README.md
CHANGED
|
@@ -7,6 +7,8 @@ tags:
|
|
| 7 |
- String Matching
|
| 8 |
- Fuzzy Join
|
| 9 |
- Entity Retrieval
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
## PEARL-base
|
| 12 |
|
|
@@ -45,7 +47,25 @@ Cost comparison of FastText and PEARL. The estimated memory is calculated by the
|
|
| 45 |
|
| 46 |
## Usage
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
```python
|
| 51 |
import torch.nn.functional as F
|
|
|
|
| 7 |
- String Matching
|
| 8 |
- Fuzzy Join
|
| 9 |
- Entity Retrieval
|
| 10 |
+
- transformers
|
| 11 |
+
- sentence-transformers
|
| 12 |
---
|
| 13 |
## PEARL-base
|
| 14 |
|
|
|
|
| 47 |
|
| 48 |
## Usage
|
| 49 |
|
| 50 |
+
### Sentence Transformers
|
| 51 |
+
PEARL is integrated with the Sentence Transformers library, and can be used like so:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
from sentence_transformers import SentenceTransformer, util
|
| 55 |
+
|
| 56 |
+
query_texts = ["The New York Times"]
|
| 57 |
+
doc_texts = [ "NYTimes", "New York Post", "New York"]
|
| 58 |
+
input_texts = query_texts + doc_texts
|
| 59 |
+
|
| 60 |
+
model = SentenceTransformer("Lihuchen/pearl_base")
|
| 61 |
+
embeddings = model.encode(input_texts)
|
| 62 |
+
scores = util.cos_sim(embeddings[0], embeddings[1:]) * 100
|
| 63 |
+
print(scores.tolist())
|
| 64 |
+
# [[85.61601257324219, 73.65623474121094, 70.36174774169922]]
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### Transformers
|
| 68 |
+
You can also use `transformers` to use PEARL. Below is an example of entity retrieval, and we reuse the code from E5.
|
| 69 |
|
| 70 |
```python
|
| 71 |
import torch.nn.functional as F
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.3.1",
|
| 4 |
+
"transformers": "4.37.0",
|
| 5 |
+
"pytorch": "2.1.0+cu121"
|
| 6 |
+
}
|
| 7 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|