---
license: other
tags:
- axolotl
- finetune
- qlora
base_model: openchat/openchat-3.5-0106
datasets:
- hendrycks/competition_math
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- STEM-AI-mtl/Electrical-engineering
- openbookqa
- piqa
- metaeval/reclor
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- sciq
- TIGER-Lab/ScienceEval
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/aimTTdmut59aZxOWQlkcC.jpeg)

# ๐Ÿ”ฌ๐Ÿ‘ฉโ€๐Ÿ”ฌ Newton-7B

This model is a fine-tuned version of [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) on datasets related to science.

This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).

This model's training was sponsored by [sablo.ai](https://sablo.ai).

<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: openchat/openchat-3.5-0106
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false


datasets:
  - path: merged_all.json
    type:
      field_instruction: instruction
      field_output: output

      format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:"
      no_input_format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:"


dataset_prepared_path: last_run_prepared
val_set_size: 0.01 # not sure
output_dir: ./newton

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

hub_model_id: Weyaxi/newton-lora
save_safetensors: true

# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10 # not sure

saves_per_epoch: 2

evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128

debug:
deepspeed:
weight_decay: 0.1 # not sure
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
tokens:
  - "<|end_of_turn|>"
  - "<|pad_0|>"
```

</details><br>

# ๐Ÿ“Š Datasets

You can find the dataset I used and the work I am doing with this datasets here:

https://huggingface.co/datasets/Weyaxi/sci-datasets

Following datasets were used in this model:

- ๐Ÿ“ [MATH](https://huggingface.co/datasets/hendrycks/competition_math)

- ๐Ÿง  [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)

- ๐Ÿงฒ [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)

- โš—๏ธ [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)

- ๐Ÿฆ  [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)

- ๐Ÿ“Š [camel-ai/math](https://huggingface.co/datasets/camel-ai/math)

- โšก [STEM-AI-mtl/Electrical-engineering](https://huggingface.co/datasets/STEM-AI-mtl/Electrical-engineering)

- ๐Ÿ“š [openbookqa](https://huggingface.co/datasets/openbookqa)

- ๐Ÿง  [piqa](https://huggingface.co/datasets/piqa)

- ๐ŸŽจ [reclor](https://huggingface.co/datasets/metaeval/reclor)

- ๐Ÿ”ฌ [scibench](https://github.com/mandyyyyii/scibench)

- ๐Ÿงช [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA)

- ๐Ÿงฌ [sciq](https://huggingface.co/datasets/sciq)

- ๐Ÿ“ [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval)

## ๐Ÿ› ๏ธ Multiple Choice Question & Answer Datasets Conversion Progress

I used [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) to generate a reasonable and logical answer by providing it with the question and the answer key.

I used the [Together AI](https://www.together.ai) API for this task.

The following datasets are converted using this method:

- ๐Ÿง  [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)

- ๐Ÿ“š [openbookqa](https://huggingface.co/datasets/openbookqa)

- ๐ŸŽจ [reclor](https://huggingface.co/datasets/metaeval/reclor)

- ๐Ÿงฌ [sciq](https://huggingface.co/datasets/sciq)

# ๐Ÿ’ฌ Prompt Template

You can use this prompt template while using the model:

### GPT4 Correct [(Openchat)](https://huggingface.co/openchat/openchat-3.5-0106#conversation-templates)

```
GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: {asistant}<|end_of_turn|>GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant:
```

You can also utilize the chat template method from the tokenizer config like here:

```python
messages = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"},
    {"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
```

# ๐Ÿค Acknowledgments

Thanks to [openchat](https://huggingface.co/openchat) team for fine-tuning an excellent model that I used as a base model.

Thanks to [@jondurbin](https://huggingface.co/jondurbin) for reformatting codes for some datasets: [bagel/data_sources](https://github.com/jondurbin/bagel/tree/main/bagel/data_sources)

Thanks to [Together AI](https://www.together.ai) for providing everyone with free credits, which I used to generate a dataset in multiple choice to explanations format.

Thanks to [Tim Dettmers](https://huggingface.co/timdettmers) for his excellent [QLoRA](https://arxiv.org/abs/2305.14314) work.

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.

Overall, thanks to all of the open soure AI community! ๐Ÿš€

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

If you would like to support me:

[โ˜• Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)