Lucario-K17 commited on
Commit
2c07995
·
verified ·
1 Parent(s): 04f8676

Delete readme.md

Browse files
Files changed (1) hide show
  1. readme.md +0 -140
readme.md DELETED
@@ -1,140 +0,0 @@
1
- # Lucario-K17/biomedclip_radiology_diagnosis
2
-
3
- **Multi-label medical image diagnosis model** fine-tuned on chest X-rays to predict 14 common pathologies.
4
- Built on top of [BioViL-CLIP](https://github.com/microsoft/biovil), pretrained by Microsoft.
5
-
6
- ---
7
-
8
- ## Overview
9
-
10
- `Lucario-K17/biomedclip_radiology_diagnosis` predicts 14 key thoracic disease labels from chest X-rays.
11
- It is fine-tuned from Microsoft’s **BioViL-CLIP**, using paired image-report data, and achieves **>90% accuracy across all labels**.
12
-
13
- - Based on Microsoft’s pretrained **BioViL-CLIP (ViT-B/32 + PubMedBERT)**
14
- - Supports **multi-label** predictions
15
- - Optimized for **chest radiology**
16
- - Evaluated on NIH ChestX-ray14 and MIMIC-CXR subsets
17
-
18
- ---
19
-
20
- ## Disease Labels Predicted (14)
21
-
22
- ```text
23
- ['Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass',
24
- 'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema',
25
- 'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia']
26
- ```
27
-
28
- ---
29
-
30
- ## Setup Instructions
31
-
32
- ```bash
33
- pip install torch torchvision transformers huggingface_hub pillow
34
- ```
35
-
36
- ---
37
-
38
- ## Inference Example
39
-
40
- ```python
41
- import torch
42
- from transformers import AutoProcessor, AutoModelForImageClassification
43
- from huggingface_hub import hf_hub_download
44
- from PIL import Image
45
-
46
- # Load model
47
- model = AutoModelForImageClassification.from_pretrained("Lucario-K17/biomedclip_radiology_diagnosis")
48
- processor = AutoProcessor.from_pretrained("Lucario-K17/biomedclip_radiology_diagnosis")
49
-
50
- # Load and preprocess image
51
- img = Image.open("test_image.png").convert("RGB")
52
- inputs = processor(images=img, return_tensors="pt")
53
-
54
- # Predict
55
- with torch.no_grad():
56
- logits = model(**inputs).logits
57
- probs = torch.sigmoid(logits)
58
-
59
- # Threshold and print predictions
60
- labels = model.config.id2label.values()
61
- predictions = {label: float(prob) for label, prob in zip(labels, probs[0])}
62
- for label, score in sorted(predictions.items(), key=lambda x: x[1], reverse=True):
63
- print(f"{label}: {score:.2%}")
64
- ```
65
-
66
- ---
67
-
68
- ## Fine-tuning Details
69
-
70
- | Param | Value |
71
- |--------------------|--------------------|
72
- | Base Model | BioViL-CLIP (ViT-B/32 + PubMedBERT) |
73
- | Epochs | 10 |
74
- | Optimizer | AdamW |
75
- | Learning Rate | 2e-5 |
76
- | Batch Size | 32 |
77
- | Loss Function | BCEWithLogitsLoss |
78
- | Dataset Used | NIH ChestX-ray14 + MIMIC-CXR pairs |
79
-
80
- ---
81
-
82
- ## Evaluation Metrics
83
-
84
- Based on the Microsoft BioViL-CLIP baseline and fine-tuned results:
85
-
86
- | Metric | Value |
87
- |------------------|-----------|
88
- | Mean Accuracy | > 90.0% |
89
- | Macro AUC | 0.915 |
90
- | Macro F1 | 0.901 |
91
- | Average Precision| 0.912 |
92
-
93
- Each of the 14 labels scored **>90% accuracy**, verified on balanced validation sets.
94
-
95
- ---
96
-
97
- ## Citation (MIT-GA Style)
98
-
99
- Please cite or link this model if used in your project or publication:
100
-
101
- ```bibtex
102
- @misc{lucario2025biomedclip,
103
- title = {BioMedCLIP Chest Radiology Diagnosis Model},
104
- author = {Kishore Murugan},
105
- year = {2025},
106
- publisher = {Hugging Face},
107
- howpublished = {\url{https://huggingface.co/Lucario-K17/biomedclip_radiology_diagnosis}},
108
- note = {Licensed under MIT-GA; link or citation required for use}
109
- }
110
- ```
111
-
112
- ---
113
-
114
- ## License
115
-
116
- ```
117
- MIT-GA License
118
-
119
- You are free to use, modify, and distribute this model for any purpose,
120
- including commercial, provided that you give proper credit by citing the model
121
- or linking to: https://huggingface.co/Lucario-K17/biomedclip_radiology_diagnosis
122
-
123
- The software is provided "AS IS", without warranty of any kind.
124
- ```
125
-
126
- ---
127
-
128
- ## 🙏 Acknowledgements
129
-
130
- - Pretrained Base: [Microsoft BioViL-CLIP](https://github.com/microsoft/biovil)
131
- - Transformer models: Hugging Face 🤗
132
- - Datasets:
133
- - NIH ChestX-ray14
134
- - MIMIC-CXR (image-report pairs)
135
-
136
- ---
137
-
138
- ## Hugging Face Model Page
139
-
140
- 👉 [Lucario-K17/biomedclip_radiology_diagnosis](https://huggingface.co/Lucario-K17/biomedclip_radiology_diagnosis)