--- library_name: transformers tags: - translation - english-to-italian - nlp - MarianMT --- # Model Card for lucio94c/ita_to_eng This model is a fine-tuned neural machine translation (NMT) model for translating text from **Italian to English** using the Hugging Face 🤗 `transformers` library. ## Model Details ### Model Description This model is based on the pre-trained [Helsinki-NLP/opus-mt-it-en](https://huggingface.co/Helsinki-NLP/opus-mt-it-en) MarianMT architecture and has been fine-tuned on additional parallel Italian–English data for improved translation quality on general and informal texts. - **Developed by:** [Lucio Ciracì](https://huggingface.co/lucio94c) - **Model type:** Sequence-to-sequence neural translation (MarianMT) - **Language(s) (NLP):** Italian → English - **License:** MIT (or match the original model’s license if not MIT) - **Finetuned from model:** Helsinki-NLP/opus-mt-it-en ### Model Sources - **Repository:** [https://huggingface.co/lucio94c/ita_to_eng](https://huggingface.co/lucio94c/ita_to_eng) - **Paper [optional]:** [MarianMT: Fast Neural Machine Translation in C++](https://arxiv.org/abs/2006.06687) ## Uses ### Direct Use - Translate Italian text into English for documents, emails, or general understanding. - Useful for language learners, travelers, or anyone needing fast Italian-to-English translation. ### Downstream Use - Can be fine-tuned further for specific domains (e.g., legal, medical, technical). ### Out-of-Scope Use - Not suitable for translating highly domain-specific or sensitive content without further fine-tuning. - Not designed for translating code or non-natural language text. ## Bias, Risks, and Limitations - The model may reflect biases present in the training data. - Quality may decrease on slang, dialects, or specialized terminology. - Automatic translations can contain errors; always review important text. ### Recommendations - Review translations, especially for professional or sensitive contexts. - Do not use for critical translations (medical, legal, etc.) without human verification. ## How to Get Started with the Model ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("lucio94c/ita_to_eng") tokenizer = AutoTokenizer.from_pretrained("lucio94c/ita_to_eng") text = "Ciao, come stai?" inputs = tokenizer(text, return_tensors="pt") output = model.generate(**inputs) print(tokenizer.decode(output[0], skip_special_tokens=True))