update train script
Browse files- train_with_unsloth.py +5 -5
train_with_unsloth.py
CHANGED
|
@@ -142,19 +142,19 @@ def clean_assistant_marker(example):
|
|
| 142 |
# clean: <|im_start|>assistant\n\n -> <|im_start|>assistant\n
|
| 143 |
dataset = dataset.map(clean_assistant_marker, batched=False)
|
| 144 |
|
| 145 |
-
new_dataset = dataset.train_test_split(test_size=0.
|
| 146 |
|
| 147 |
# Configure training arguments
|
| 148 |
training_args = SFTConfig(
|
| 149 |
fp16_full_eval=False,
|
| 150 |
per_device_train_batch_size=1,
|
| 151 |
-
gradient_accumulation_steps=
|
| 152 |
per_device_eval_batch_size=1,
|
| 153 |
-
eval_accumulation_steps=
|
| 154 |
evaluation_strategy="steps",
|
| 155 |
-
eval_steps=
|
| 156 |
save_strategy="steps",
|
| 157 |
-
save_steps=
|
| 158 |
load_best_model_at_end=True,
|
| 159 |
metric_for_best_model="eval_loss",
|
| 160 |
greater_is_better=False,
|
|
|
|
| 142 |
# clean: <|im_start|>assistant\n\n -> <|im_start|>assistant\n
|
| 143 |
dataset = dataset.map(clean_assistant_marker, batched=False)
|
| 144 |
|
| 145 |
+
new_dataset = dataset.train_test_split(test_size=0.1)
|
| 146 |
|
| 147 |
# Configure training arguments
|
| 148 |
training_args = SFTConfig(
|
| 149 |
fp16_full_eval=False,
|
| 150 |
per_device_train_batch_size=1,
|
| 151 |
+
gradient_accumulation_steps=1,
|
| 152 |
per_device_eval_batch_size=1,
|
| 153 |
+
eval_accumulation_steps=1,
|
| 154 |
evaluation_strategy="steps",
|
| 155 |
+
eval_steps=1000,
|
| 156 |
save_strategy="steps",
|
| 157 |
+
save_steps=1000,
|
| 158 |
load_best_model_at_end=True,
|
| 159 |
metric_for_best_model="eval_loss",
|
| 160 |
greater_is_better=False,
|