--- language: - dan license: apache-2.0 datasets: - LumiOpen/hpltv2-llama33-edu-annotation --- # Llama-HPLT-edu-Danish classifier ## Model summary This is a classifier for judging the educational content of Danish (dan-Latn) web pages. It was developed to filter educational content from [HPLT v2](https://hplt-project.org/datasets/v2.0) and was trained on 450k [annotations](https://huggingface.co/datasets/LumiOpen/hpltv2-llama33-edu-annotation) generated by [LLama3.3-70B-instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). The web pages were sampled randomly from Danish subset of the corpus. ### How to load in transformers To load the Llama-HPLT-Edu classifier, use the following code: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-dan-Latn") model = AutoModelForSequenceClassification.from_pretrained("LumiOpen/llama-hpltv2-edu-classifier-xlm-roberta-large-dan-Latn") text = "I'm non-educational web page containing nothing useful" inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) #results from a model trained with Welsh annotations #{'text': "I'm non-educational web page containing nothing useful", 'score': 0.8145455718040466, 'int_score': 1} #{'text': 'what are most common animals found in farm? there are cows, sheeps', 'score': 1.6858888864517212, 'int_score': 2} ``` ## Training - Model: FacebookAI/xlm-roberta-large with a classification head - Dataset: 500,000 samples from Llama3.3 annotations split into 450,000 train, 25,000 validation, and 25,000 test splits. - Epochs: 20 - Learning Rate: 3e-4 - Evaluation Metric: F1 score ### Test Metrics ``` precision recall f1-score support 0 0.85 0.74 0.80 12079 1 0.58 0.72 0.64 8509 2 0.46 0.50 0.48 2811 3 0.37 0.29 0.32 1004 4 0.70 0.17 0.27 577 5 0.10 0.05 0.07 20 accuracy 0.68 25000 macro avg 0.51 0.41 0.43 25000 weighted avg 0.69 0.68 0.68 25000 ``` ## Citing Preprint coming soon. If you need to cite this work, please use the citation below: ``` @misc {llama_hplt_edu_classifiers_2025, author = { Tarkka, Otto, Reunamo, Akseli, Vitiugin, Fedor and Pyysalo, Sampo } title = { Llama-HPLT-edu classifiers }, year = 2025, url = {https://huggingface.co/collections/LumiOpen/hplt-edu-classifiers-68a85a78f9710426320e7cbb}, publisher = { Hugging Face } } ```