Upload fine-tuned Whisper Medium Egyptian model: whisper-medium-egy
Browse files- README.md +150 -0
- model/CKPT.yaml +4 -0
- model/brain.ckpt +3 -0
- model/counter.ckpt +3 -0
- model/dataloader-TRAIN.ckpt +3 -0
- model/model.ckpt +3 -0
- model/optimizer.ckpt +3 -0
- model/scheduler.ckpt +3 -0
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ar
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- whisper
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- asr
|
8 |
+
- audio
|
9 |
+
- arabic
|
10 |
+
- egyptian-arabic
|
11 |
+
datasets:
|
12 |
+
- MAdel121/arabic-egy-cleaned
|
13 |
+
metrics:
|
14 |
+
- wer
|
15 |
+
- cer
|
16 |
+
base_model: openai/whisper-medium
|
17 |
+
pipeline_tag: automatic-speech-recognition
|
18 |
+
library_name: transformers
|
19 |
+
model-index:
|
20 |
+
- name: whisper-medium-egy
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: automatic-speech-recognition
|
24 |
+
name: Speech Recognition
|
25 |
+
dataset:
|
26 |
+
name: MAdel121/arabic-egy-cleaned (validation split)
|
27 |
+
type: MAdel121/arabic-egy-cleaned
|
28 |
+
config: ar
|
29 |
+
split: validation
|
30 |
+
metrics:
|
31 |
+
- name: WER
|
32 |
+
type: wer
|
33 |
+
value: 18.029990439289488
|
34 |
+
- name: CER
|
35 |
+
type: cer
|
36 |
+
value: 13.375029793807732
|
37 |
+
---
|
38 |
+
|
39 |
+
# Whisper Medium Egyptian Arabic (whisper-medium-egy)
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on a custom dataset of 72 hours of Egyptian Arabic speech. It's designed for Automatic Speech Recognition (ASR) for the Egyptian Arabic dialect.
|
42 |
+
|
43 |
+
## Model Description
|
44 |
+
|
45 |
+
* **Base Model:** `openai/whisper-medium`
|
46 |
+
* **Language:** Arabic (ar), specifically focused on Egyptian dialect (arz)
|
47 |
+
* **Fine-tuning Dataset:** `MAdel121/arabic-egy-cleaned` (approx. 72 hours)
|
48 |
+
* **Total Training Steps:** 7299
|
49 |
+
* **Epochs:** 10
|
50 |
+
|
51 |
+
## Intended Uses & Limitations
|
52 |
+
|
53 |
+
This model is intended for transcribing speech in Egyptian Arabic.
|
54 |
+
|
55 |
+
**Intended Use:**
|
56 |
+
* Automatic transcription of audio recordings and live speech in Egyptian Arabic.
|
57 |
+
* Assisting with content creation, subtitling, and voice-controlled applications for Egyptian Arabic speakers.
|
58 |
+
|
59 |
+
**Limitations:**
|
60 |
+
* Performance may degrade in highly noisy environments or with very strong, non-Egyptian accents.
|
61 |
+
* The model was fine-tuned on a specific dataset; its performance on significantly different domains or audio characteristics might vary.
|
62 |
+
* The training data primarily consists of [describe your dataset sources/domains if possible, e.g., "YouTube videos", "audiobooks", "scripted conversations"]. Performance might be better on similar types of audio.
|
63 |
+
|
64 |
+
## How to Use
|
65 |
+
|
66 |
+
You can use this model with the `transformers` library and the `pipeline` interface for ease of use.
|
67 |
+
|
68 |
+
```python
|
69 |
+
from transformers import pipeline
|
70 |
+
import torch
|
71 |
+
|
72 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
73 |
+
|
74 |
+
pipe = pipeline(
|
75 |
+
"automatic-speech-recognition",
|
76 |
+
model="YOUR_HF_USERNAME/whisper-medium-egy", # Replace YOUR_HF_USERNAME with your Hugging Face username
|
77 |
+
device=device
|
78 |
+
)
|
79 |
+
|
80 |
+
# Example with a local audio file
|
81 |
+
# audio_file = "path/to/your/egyptian_arabic_audio.wav"
|
82 |
+
# transcription = pipe(audio_file, generate_kwargs={"language": "arabic"})["text"]
|
83 |
+
# print(transcription)
|
84 |
+
|
85 |
+
# Example with a Hugging Face dataset audio sample
|
86 |
+
# from datasets import load_dataset
|
87 |
+
# ds = load_dataset("MAdel121/arabic-egy-cleaned", "ar", split="validation") # Or your test split
|
88 |
+
# sample = ds[0]["audio"] # Make sure your dataset has an "audio" column
|
89 |
+
# result = pipe(sample.copy(), generate_kwargs={"language": "arabic"})
|
90 |
+
# print(result["text"])
|
91 |
+
```
|
92 |
+
Make sure to replace `"YOUR_HF_USERNAME/whisper-medium-egy"` with the actual model ID after uploading. The `generate_kwargs={"language": "arabic"}` is important for Whisper models to ensure correct tokenization and transcription for the target language.
|
93 |
+
|
94 |
+
## Training Data
|
95 |
+
|
96 |
+
The model was fine-tuned on the `MAdel121/arabic-egy-cleaned` dataset available on the Hugging Face Hub. This dataset contains approximately 72 hours of Egyptian Arabic audio paired with transcripts.
|
97 |
+
|
98 |
+
## Training Procedure
|
99 |
+
|
100 |
+
The model was trained using the `transformers` library. The fine-tuning process involved the following key hyperparameters:
|
101 |
+
|
102 |
+
* **Base Model:** `openai/whisper-medium`
|
103 |
+
* **Optimizer:** AdamW
|
104 |
+
* **Learning Rate:** 1e-5 (0.00001)
|
105 |
+
* **Warmup Steps:** 1000
|
106 |
+
* **Weight Decay:** 0.05
|
107 |
+
* **Gradient Accumulation Factor:** 2
|
108 |
+
* **Batch Size (loader_batch_size):** 8 (effective batch size would be 8 * 2 = 16)
|
109 |
+
* **Number of Epochs:** 10
|
110 |
+
* **Max Grad Norm:** 5
|
111 |
+
* **Augmentations Used:**
|
112 |
+
* `use_drop_freq`: true
|
113 |
+
* `use_drop_chunk`: true
|
114 |
+
* `use_drop_bit_resolution`: true
|
115 |
+
* Other augmentations like `use_add_noise`, `use_speed_perturb`, `use_pitch_shift`, `use_add_reverb`, `use_codec_augment`, `use_gain` were set to `false`
|
116 |
+
* **Task:** transcribe
|
117 |
+
* **Language:** ar
|
118 |
+
* **Seed:** 1986
|
119 |
+
|
120 |
+
The training was managed and tracked using Weights & Biases under the project `whisper-medium-egyptian-arabic` with resume ID `r3sz4v27`.
|
121 |
+
|
122 |
+
## Training Code
|
123 |
+
|
124 |
+
Can be found on [Github here](https://github.com/moadel321/Fine-tuning-whisper-on-Modal-Labs-with-speech-brain-augmentations-/blob/c85312785faa2b927cbc217fe43acb8ed660d2ee/train_whisper_modal.py)
|
125 |
+
|
126 |
+
## Weights & Biases
|
127 |
+
|
128 |
+
Run can be found here : https://wandb.ai/m-adelomar1/whisper-medium-egyptian-arabic/
|
129 |
+
|
130 |
+
## Evaluation Results
|
131 |
+
|
132 |
+
The model was evaluated on the `validation` split of the `MAdel121/arabic-egy-cleaned` dataset.
|
133 |
+
|
134 |
+
* **Word Error Rate (WER):** 18.03%
|
135 |
+
* **Character Error Rate (CER):** 13.38%
|
136 |
+
|
137 |
+
These metrics indicate the performance of the model on the validation set. Lower values are better.
|
138 |
+
|
139 |
+
### BibTeX Citation
|
140 |
+
|
141 |
+
```bibtex
|
142 |
+
@misc{your_name_2024_whisper_medium_egy,
|
143 |
+
author = Madel
|
144 |
+
title = {Whisper Medium Fine-tuned for Egyptian Arabic},
|
145 |
+
year = {2025},
|
146 |
+
publisher = {Hugging Face},
|
147 |
+
journal = {Hugging Face Hub},
|
148 |
+
howpublished = {\\url{https://huggingface.co/MAdel121/whisper-medium-egy}} // Replace with actual URL
|
149 |
+
}
|
150 |
+
```
|
model/CKPT.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yamllint disable
|
2 |
+
brain_intra_epoch_ckpt: true
|
3 |
+
end-of-epoch: false
|
4 |
+
unixtime: 1746494038.3237214
|
model/brain.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64af57c5b2b2982bda94205f9340a6e14b9fa13e472b89793fbd36575371282b
|
3 |
+
size 65
|
model/counter.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a44dc15364204a80fe80e9039455cc1608281820fe2b24f1e5233ade6af1dd5
|
3 |
+
size 2
|
model/dataloader-TRAIN.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b24bdc2fb415e6a7038f442fd99a7144f3cfe358086a1ba9cfb1ac0a44ed7bb2
|
3 |
+
size 4
|
model/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d792ab272f5fb4d0d48b7b6836d79b1ebed948b7872aa0c9f827c25f6d956e25
|
3 |
+
size 3055793114
|
model/optimizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:852d2cad94668a6e9b2f1ca78a9d792f5430ec87fed36adbc9ae04a1783b043f
|
3 |
+
size 6111664039
|
model/scheduler.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:000d9d4bec2874c99cd692c4431560aab31f77ae0d6b007244172cda4ac86c42
|
3 |
+
size 936
|