ahmedheakl commited on
Commit
3ee7337
·
verified ·
1 Parent(s): 5142a0b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +351 -0
README.md CHANGED
@@ -72,6 +72,357 @@ tags:
72
  <em> <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding", <strong>Video:</strong> "General Video & Multi-Image Understanding", <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding", <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
73
  </em>
74
  </h6>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ---
77
  ## ⚖️ Quantitative Evaluation and Results
 
72
  <em> <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding", <strong>Video:</strong> "General Video & Multi-Image Understanding", <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding", <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
73
  </em>
74
  </h6>
75
+
76
+ ---
77
+ ## ⚖️ Quick Start
78
+ Please install the qwen vision kit. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
79
+
80
+ ```bash
81
+ pip install qwen-vl-utils
82
+ ```
83
+
84
+ Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
85
+
86
+ ```python
87
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
88
+ from qwen_vl_utils import process_vision_info
89
+ # default: Load the model on the available device(s)
90
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
91
+ "MBZUAI/AIN", torch_dtype="auto", device_map="auto"
92
+ )
93
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
94
+ # model = Qwen2VLForConditionalGeneration.from_pretrained(
95
+ # "MBZUAI/AIN",
96
+ # torch_dtype=torch.bfloat16,
97
+ # attn_implementation="flash_attention_2",
98
+ # device_map="auto",
99
+ # )
100
+ # default processer
101
+ processor = AutoProcessor.from_pretrained("MBZUAI/AIN")
102
+ # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
103
+ # min_pixels = 256*28*28
104
+ # max_pixels = 1280*28*28
105
+ # processor = AutoProcessor.from_pretrained("MBZUAI/AIN", min_pixels=min_pixels, max_pixels=max_pixels)
106
+ messages = [
107
+ {
108
+ "role": "user",
109
+ "content": [
110
+ {
111
+ "type": "image",
112
+ "image": "https://huggingface.co/MBZUAI/AIN/resolve/main/assets_hf/demo_image.jpeg",
113
+ },
114
+ {"type": "text", "text": "يرجى وصف هذه الصورة."},
115
+ ],
116
+ }
117
+ ]
118
+ # Preparation for inference
119
+ text = processor.apply_chat_template(
120
+ messages, tokenize=False, add_generation_prompt=True
121
+ )
122
+ image_inputs, video_inputs = process_vision_info(messages)
123
+ inputs = processor(
124
+ text=[text],
125
+ images=image_inputs,
126
+ videos=video_inputs,
127
+ padding=True,
128
+ return_tensors="pt",
129
+ )
130
+ inputs = inputs.to("cuda")
131
+ # Inference: Generation of the output
132
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
133
+ generated_ids_trimmed = [
134
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
135
+ ]
136
+ output_text = processor.batch_decode(
137
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
138
+ )
139
+ print(output_text)
140
+ ```
141
+ <details>
142
+ <summary>Without qwen_vl_utils</summary>
143
+
144
+ ```python
145
+ from PIL import Image
146
+ import requests
147
+ import torch
148
+ from torchvision import io
149
+ from typing import Dict
150
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
151
+ # Load the model in half-precision on the available device(s)
152
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
153
+ "MBZUAI/AIN", torch_dtype="auto", device_map="auto"
154
+ )
155
+ processor = AutoProcessor.from_pretrained("MBZUAI/AIN")
156
+ # Image
157
+ url = "https://huggingface.co/MBZUAI/AIN/resolve/main/assets_hf/demo_image.jpeg"
158
+ image = Image.open(requests.get(url, stream=True).raw)
159
+ conversation = [
160
+ {
161
+ "role": "user",
162
+ "content": [
163
+ {
164
+ "type": "image",
165
+ },
166
+ {"type": "text", "text": "Describe this image in Arabic."},
167
+ ],
168
+ }
169
+ ]
170
+ # Preprocess the inputs
171
+ text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
172
+ # Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
173
+ inputs = processor(
174
+ text=[text_prompt], images=[image], padding=True, return_tensors="pt"
175
+ )
176
+ inputs = inputs.to("cuda")
177
+ # Inference: Generation of the output
178
+ output_ids = model.generate(**inputs, max_new_tokens=128)
179
+ generated_ids = [
180
+ output_ids[len(input_ids) :]
181
+ for input_ids, output_ids in zip(inputs.input_ids, output_ids)
182
+ ]
183
+ output_text = processor.batch_decode(
184
+ generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
185
+ )
186
+ print(output_text)
187
+ ```
188
+ </details>
189
+ <details>
190
+ <summary>Multi image inference</summary>
191
+
192
+ ```python
193
+ # Messages containing multiple images and a text query
194
+ messages = [
195
+ {
196
+ "role": "user",
197
+ "content": [
198
+ {"type": "image", "image": "file:///path/to/image1.jpg"},
199
+ {"type": "image", "image": "file:///path/to/image2.jpg"},
200
+ {"type": "text", "text": "Identify the similarities between these images."},
201
+ ],
202
+ }
203
+ ]
204
+ # Preparation for inference
205
+ text = processor.apply_chat_template(
206
+ messages, tokenize=False, add_generation_prompt=True
207
+ )
208
+ image_inputs, video_inputs = process_vision_info(messages)
209
+ inputs = processor(
210
+ text=[text],
211
+ images=image_inputs,
212
+ videos=video_inputs,
213
+ padding=True,
214
+ return_tensors="pt",
215
+ )
216
+ inputs = inputs.to("cuda")
217
+ # Inference
218
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
219
+ generated_ids_trimmed = [
220
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
221
+ ]
222
+ output_text = processor.batch_decode(
223
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
224
+ )
225
+ print(output_text)
226
+ ```
227
+ </details>
228
+
229
+ <details>
230
+ <summary>Video inference</summary>
231
+
232
+ ```python
233
+ # Messages containing a images list as a video and a text query
234
+ messages = [
235
+ {
236
+ "role": "user",
237
+ "content": [
238
+ {
239
+ "type": "video",
240
+ "video": [
241
+ "file:///path/to/frame1.jpg",
242
+ "file:///path/to/frame2.jpg",
243
+ "file:///path/to/frame3.jpg",
244
+ "file:///path/to/frame4.jpg",
245
+ ],
246
+ "fps": 1.0,
247
+ },
248
+ {"type": "text", "text": "Describe this video."},
249
+ ],
250
+ }
251
+ ]
252
+ # Messages containing a video and a text query
253
+ messages = [
254
+ {
255
+ "role": "user",
256
+ "content": [
257
+ {
258
+ "type": "video",
259
+ "video": "file:///path/to/video1.mp4",
260
+ "max_pixels": 360 * 420,
261
+ "fps": 1.0,
262
+ },
263
+ {"type": "text", "text": "Describe this video."},
264
+ ],
265
+ }
266
+ ]
267
+ # Preparation for inference
268
+ text = processor.apply_chat_template(
269
+ messages, tokenize=False, add_generation_prompt=True
270
+ )
271
+ image_inputs, video_inputs = process_vision_info(messages)
272
+ inputs = processor(
273
+ text=[text],
274
+ images=image_inputs,
275
+ videos=video_inputs,
276
+ padding=True,
277
+ return_tensors="pt",
278
+ )
279
+ inputs = inputs.to("cuda")
280
+ # Inference
281
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
282
+ generated_ids_trimmed = [
283
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
284
+ ]
285
+ output_text = processor.batch_decode(
286
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
287
+ )
288
+ print(output_text)
289
+ ```
290
+ </details>
291
+
292
+ <details>
293
+ <summary>Batch inference</summary>
294
+
295
+ ```python
296
+ # Sample messages for batch inference
297
+ messages1 = [
298
+ {
299
+ "role": "user",
300
+ "content": [
301
+ {"type": "image", "image": "file:///path/to/image1.jpg"},
302
+ {"type": "image", "image": "file:///path/to/image2.jpg"},
303
+ {"type": "text", "text": "What are the common elements in these pictures?"},
304
+ ],
305
+ }
306
+ ]
307
+ messages2 = [
308
+ {"role": "system", "content": "You are a helpful assistant."},
309
+ {"role": "user", "content": "Who are you?"},
310
+ ]
311
+ # Combine messages for batch processing
312
+ messages = [messages1, messages1]
313
+ # Preparation for batch inference
314
+ texts = [
315
+ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
316
+ for msg in messages
317
+ ]
318
+ image_inputs, video_inputs = process_vision_info(messages)
319
+ inputs = processor(
320
+ text=texts,
321
+ images=image_inputs,
322
+ videos=video_inputs,
323
+ padding=True,
324
+ return_tensors="pt",
325
+ )
326
+ inputs = inputs.to("cuda")
327
+ # Batch Inference
328
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
329
+ generated_ids_trimmed = [
330
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
331
+ ]
332
+ output_texts = processor.batch_decode(
333
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
334
+ )
335
+ print(output_texts)
336
+ ```
337
+ </details>
338
+
339
+ ### More Usage Tips
340
+
341
+ For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
342
+
343
+ ```python
344
+ # You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
345
+ ## Local file path
346
+ messages = [
347
+ {
348
+ "role": "user",
349
+ "content": [
350
+ {"type": "image", "image": "file:///path/to/your/image.jpg"},
351
+ {"type": "text", "text": "Describe this image."},
352
+ ],
353
+ }
354
+ ]
355
+ ## Image URL
356
+ messages = [
357
+ {
358
+ "role": "user",
359
+ "content": [
360
+ {"type": "image", "image": "http://path/to/your/image.jpg"},
361
+ {"type": "text", "text": "Describe this image."},
362
+ ],
363
+ }
364
+ ]
365
+ ## Base64 encoded image
366
+ messages = [
367
+ {
368
+ "role": "user",
369
+ "content": [
370
+ {"type": "image", "image": "data:image;base64,/9j/..."},
371
+ {"type": "text", "text": "Describe this image."},
372
+ ],
373
+ }
374
+ ]
375
+ ```
376
+ #### Image Resolution for performance boost
377
+
378
+ The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
379
+
380
+ ```python
381
+ min_pixels = 256 * 28 * 28
382
+ max_pixels = 1280 * 28 * 28
383
+ processor = AutoProcessor.from_pretrained(
384
+ "MBZUAI/AIN", min_pixels=min_pixels, max_pixels=max_pixels
385
+ )
386
+ ```
387
+
388
+ Besides, We provide two methods for fine-grained control over the image size input to the model:
389
+
390
+ 1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
391
+
392
+ 2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
393
+
394
+ ```python
395
+ # min_pixels and max_pixels
396
+ messages = [
397
+ {
398
+ "role": "user",
399
+ "content": [
400
+ {
401
+ "type": "image",
402
+ "image": "file:///path/to/your/image.jpg",
403
+ "resized_height": 280,
404
+ "resized_width": 420,
405
+ },
406
+ {"type": "text", "text": "Describe this image."},
407
+ ],
408
+ }
409
+ ]
410
+ # resized_height and resized_width
411
+ messages = [
412
+ {
413
+ "role": "user",
414
+ "content": [
415
+ {
416
+ "type": "image",
417
+ "image": "file:///path/to/your/image.jpg",
418
+ "min_pixels": 50176,
419
+ "max_pixels": 50176,
420
+ },
421
+ {"type": "text", "text": "Describe this image."},
422
+ ],
423
+ }
424
+ ]
425
+ ```
426
 
427
  ---
428
  ## ⚖️ Quantitative Evaluation and Results