--- license: apache-2.0 pipeline_tag: text-to-image library_name: transformers --- # PixNerd: Pixel Neural Field Diffusion
arXiv arXiv
![](https://huggingface.co/MCG-NJU/PixNerd-XL-P16-C2I/resolve/main/figs/arch.png) ## Introduction The current success of diffusion transformers heavily depends on the compressed latent space shaped by the pre-trained variational autoencoder (VAE). However, this two-stage training paradigm inevitably introduces accumulated errors and decoding artifacts. To address these problems, we propose PixNerd: Pixel Neural Field Diffusion, a single-scale, single-stage, efficient, end-to-end solution for image generation. PixNerd is a powerful and efficient **pixel-space** diffusion transformer that directly operates without a VAE. It employs a neural field to model patch-wise decoding, improving high-frequency modeling. ### Key Highlights * **VAE-Free Pixel Space Generation**: Operates directly in pixel space, eliminating accumulated errors and decoding artifacts often introduced by VAEs. * **High-Fidelity Image Synthesis**: Achieves competitive FID scores on ImageNet benchmarks: * **2.15 FID** on ImageNet $256\times256$ with PixNerd-XL/16. * **2.84 FID** on ImageNet $512\times512$ with PixNerd-XL/16. * **Competitive Text-to-Image Performance**: Extends to text-to-image applications, achieving a competitive 0.73 overall score on the GenEval benchmark and 80.9 overall score on the DPG benchmark with PixNerd-XXL/16. * **Efficient Neural Field Representation**: Leverages efficient neural field representations for optimized performance. ## Visualizations ![](https://huggingface.co/MCG-NJU/PixNerd-XL-P16-C2I/resolve/main/figs/pixelnerd_teaser.png) ![](https://huggingface.co/MCG-NJU/PixNerd-XL-P16-C2I/resolve/main/figs/pixnerd_multires.png) ## Revision of the inference time statistics Deeply sorry for this mistake, the single-step inference time of SiT-L/2 and Baseline-L is missing a zero (0.097s vs 0.0097s). The single-step inference time of PixNerd and Baseline is close. ![image.png](https://cdn-uploads.huggingface.co/production/uploads/66615c855fd9d736e670e0a9/vEGp4Lthv9JDjDa8Gvyze.png) ## Checkpoints | Dataset | Model | Params | FID | HuggingFace | |---------------|---------------|--------|-------|---------------------------------------| | ImageNet256 | PixNerd-XL/16 | 700M | 2.15 | [🤗](https://huggingface.co/MCG-NJU/PixNerd-XL-P16-C2I) | | ImageNet512 | PixNerd-XL/16 | 700M | 2.84 | [🤗](https://huggingface.co/MCG-NJU/PixNerd-XL-P16-C2I) | | Dataset | Model | Params | GenEval | DPG | HuggingFace | |---------------|---------------|--------|------|------|----------------------------------------------------------| | Text-to-Image | PixNerd-XXL/16| 1.2B | 0.73 | 80.9 | [🤗](https://huggingface.co/MCG-NJU/PixNerd-XXL-P16-T2I) | ## Online Demos ![](https://huggingface.co/MCG-NJU/PixNerd-XL-P16-C2I/resolve/main/figs/demo.png) We provide online demos for PixNerd-XXL/16 (text-to-image) on HuggingFace Spaces. HF spaces: [https://huggingface.co/spaces/MCG-NJU/PixNerd](https://huggingface.co/spaces/MCG-NJU/PixNerd) To host the local gradio demo, run the following command: ```bash # for text-to-image applications python app.py --config configs_t2i/inference_heavydecoder.yaml --ckpt_path=XXX.ckpt ``` ## Usage For C2i (ImageNet), we use ADM evaluation suite to report FID. First, install the necessary dependencies: ```bash pip install -r requirements.txt ``` To run inference: ```bash python main.py predict -c configs_c2i/pix256std1_repa_pixnerd_xl.yaml --ckpt_path=XXX.ckpt # or specify the GPU(s) to use: CUDA_VISIBLE_DEVICES=0,1, python main.py predict -c configs_c2i/pix256std1_repa_pixnerd_xl.yaml --ckpt_path=XXX.ckpt ``` For training: ```bash python main.py fit -c configs_c2i/pix256std1_repa_pixnerd_xl.yaml ``` For T2i, we use GenEval and DPG to collect metrics. ## Reference ```bibtex @article{2507.23268, Author = {Shuai Wang and Ziteng Gao and Chenhui Zhu and Weilin Huang and Limin Wang}, Title = {PixNerd: Pixel Neural Field Diffusion}, Year = {2025}, Eprint = {arXiv:2507.23268}, } ``` ## Acknowledgement The code is mainly built upon [FlowDCN](https://github.com/MCG-NJU/DDT) and [DDT](https://github.com/MCG-NJU/FlowDCN).