--- library_name: transformers base_model: MHGanainy/xmod-shared-roberta-base-legal-multi tags: - generated_from_trainer metrics: - accuracy model-index: - name: xmod-shared-roberta-base-legal-multi-downstream-build_rr results: [] --- # xmod-shared-roberta-base-legal-multi-downstream-build_rr This model is a fine-tuned version of [MHGanainy/xmod-shared-roberta-base-legal-multi](https://huggingface.co/MHGanainy/xmod-shared-roberta-base-legal-multi) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9259 - Precision-macro: 0.6337 - Recall-macro: 0.5884 - Macro-f1: 0.6021 - Precision-micro: 0.7895 - Recall-micro: 0.7895 - Micro-f1: 0.7895 - Accuracy: 0.7895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-macro | Recall-macro | Macro-f1 | Precision-micro | Recall-micro | Micro-f1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:--------:| | No log | 1.0 | 124 | 0.8663 | 0.5370 | 0.4683 | 0.4780 | 0.7461 | 0.7461 | 0.7461 | 0.7461 | | No log | 2.0 | 248 | 0.9013 | 0.4938 | 0.5409 | 0.5023 | 0.6982 | 0.6982 | 0.6982 | 0.6982 | | No log | 3.0 | 372 | 0.7797 | 0.5765 | 0.5451 | 0.5415 | 0.7635 | 0.7635 | 0.7635 | 0.7635 | | No log | 4.0 | 496 | 0.7203 | 0.6530 | 0.5478 | 0.5409 | 0.7718 | 0.7718 | 0.7718 | 0.7718 | | 0.9675 | 5.0 | 620 | 0.7465 | 0.5984 | 0.5960 | 0.5866 | 0.7777 | 0.7777 | 0.7777 | 0.7777 | | 0.9675 | 6.0 | 744 | 0.7503 | 0.6134 | 0.5692 | 0.5699 | 0.7791 | 0.7791 | 0.7791 | 0.7791 | | 0.9675 | 7.0 | 868 | 0.7665 | 0.6552 | 0.5732 | 0.5877 | 0.7864 | 0.7864 | 0.7864 | 0.7864 | | 0.9675 | 8.0 | 992 | 0.7651 | 0.6253 | 0.5880 | 0.5937 | 0.7926 | 0.7926 | 0.7926 | 0.7926 | | 0.5065 | 9.0 | 1116 | 0.8560 | 0.6075 | 0.5930 | 0.5945 | 0.7767 | 0.7767 | 0.7767 | 0.7767 | | 0.5065 | 10.0 | 1240 | 0.8643 | 0.6354 | 0.5842 | 0.5972 | 0.7902 | 0.7902 | 0.7902 | 0.7902 | | 0.5065 | 11.0 | 1364 | 0.9259 | 0.6337 | 0.5884 | 0.6021 | 0.7895 | 0.7895 | 0.7895 | 0.7895 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1