|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union, Dict |
|
import torch |
|
import torch.nn as nn |
|
import time |
|
import transformers |
|
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from videoxlpro.videoxlpro.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM |
|
|
|
|
|
import inspect |
|
import math |
|
import warnings |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from .configuration_videoxlpro_llavaqwen import Qwen2Config |
|
from videoxlpro.videoxlpro.train.modeling_utils import optional_grad_ctx, compute_loss, BeaconModelOutput |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" |
|
_CONFIG_FOR_DOC = "Qwen2Config" |
|
|
|
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Qwen/Qwen2-7B-beta", |
|
|
|
] |
|
|
|
|
|
|
|
import os |
|
import torch |
|
import time |
|
import numpy as np |
|
import torch.distributed as dist |
|
from transformers.utils import logging |
|
from transformers import AutoTokenizer |
|
from itertools import cycle |
|
from typing import List |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Memory(torch.nn.Module): |
|
def __init__( |
|
self, |
|
model_config, |
|
k_seq_dim:int=2, |
|
v_seq_dim:int=2, |
|
): |
|
"""Setup necessary attributes.""" |
|
super().__init__() |
|
|
|
self.config = model_config |
|
|
|
|
|
self.k_seq_dim = k_seq_dim |
|
self.v_seq_dim = v_seq_dim |
|
self.rng = np.random.default_rng(42) |
|
|
|
self._post_validation() |
|
self.reset() |
|
|
|
@property |
|
def beacon_token(self): |
|
return self.config.vocab_size |
|
|
|
def _post_validation(self, verbose=True): |
|
assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!" |
|
for ratio in self.config.beacon_ratio: |
|
assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!" |
|
assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!" |
|
assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!" |
|
|
|
if self.config.beacon_pos == "interleave": |
|
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode." |
|
if self.config.beacon_parallel_window > 1: |
|
assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!" |
|
|
|
self._cpu = torch.device("cpu") |
|
|
|
if verbose: |
|
info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..." |
|
logger.info(info) |
|
|
|
def set(self, verbose=True, **kwargs): |
|
""" |
|
Set attributes out of the constructor. |
|
""" |
|
for k, v in kwargs.items(): |
|
setattr(self.config, k, v) |
|
self._post_validation(verbose=verbose) |
|
|
|
def reset(self): |
|
"""Initialize attributes for a new sequence.""" |
|
|
|
self.start_idx = 0 |
|
|
|
self.end_idx = 0 |
|
|
|
self.all_beacon_sizes = [] |
|
|
|
self.batch_loss = None |
|
|
|
self.valid_token_num = None |
|
|
|
self.step_idx = 0 |
|
|
|
self.compression_ratio = None |
|
|
|
self.is_full_window = True |
|
|
|
self.raw_size_to_cache = 0 |
|
|
|
|
|
self.interleave_remainder = 0 |
|
|
|
self.interleave_compression_ratio = None |
|
self.beacon_indices = None |
|
|
|
self.all_input_ids = None |
|
self.all_attention_mask = None |
|
self.all_labels = None |
|
|
|
|
|
self.beacon_skip_first = None |
|
self.beacon_skip_last = None |
|
|
|
|
|
self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)] |
|
|
|
self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)] |
|
|
|
self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)] |
|
|
|
@property |
|
def all_sequence_length(self): |
|
if self.all_input_ids is None: |
|
return 0 |
|
else: |
|
return self.all_input_ids.shape[1] |
|
|
|
@property |
|
def batch_size(self): |
|
if self.all_input_ids is None: |
|
return 0 |
|
else: |
|
return self.all_input_ids.shape[0] |
|
|
|
@property |
|
def finish(self): |
|
is_finish = self.end_idx == self.all_sequence_length |
|
return is_finish |
|
|
|
@property |
|
def dtype(self): |
|
return self.config.torch_dtype |
|
|
|
@property |
|
def min_value(self): |
|
return torch.finfo(self.dtype).min |
|
|
|
@property |
|
def max_position_embeddings(self): |
|
max_position_embeddings = self.config.max_position_embeddings |
|
if getattr(self.config, "rope_scaling", None) is not None: |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
max_position_embeddings = max_position_embeddings * scaling_factor |
|
return max_position_embeddings |
|
|
|
@property |
|
def beacon_window(self): |
|
if ( |
|
self.beacon_skip_last is not None |
|
and self.start_idx < self.beacon_skip_last |
|
and self.start_idx + self.config.beacon_window > self.beacon_skip_last |
|
): |
|
|
|
|
|
return self.beacon_skip_last - self.start_idx |
|
else: |
|
|
|
|
|
return self.config.beacon_window |
|
|
|
@property |
|
def beacon_stride(self): |
|
if ( |
|
self.beacon_skip_last is not None |
|
and self.start_idx < self.beacon_skip_last |
|
and self.start_idx + self.config.beacon_window > self.beacon_skip_last |
|
): |
|
return self.beacon_skip_last - self.start_idx |
|
else: |
|
return self.config.beacon_stride |
|
|
|
|
|
def get_memory(self): |
|
past_key_values = [] |
|
for layer_idx in range(self.config.num_hidden_layers): |
|
sink_key, sink_value = self.sink_activations[layer_idx] |
|
beacon_key, beacon_value = self.beacon_activations[layer_idx] |
|
raw_key, raw_value = self.raw_activations[layer_idx] |
|
|
|
key = cat_tensor([ |
|
sink_key, beacon_key, raw_key, |
|
], dim=self.k_seq_dim) |
|
value = cat_tensor([ |
|
sink_value, beacon_value, raw_value, |
|
], dim=self.v_seq_dim) |
|
|
|
layer_past_key_values = (key, value) |
|
past_key_values.append(layer_past_key_values) |
|
return past_key_values |
|
|
|
def get_memory_size(self): |
|
""" |
|
Sink memory size, beacon memory size and raw memory size. |
|
""" |
|
sink_memory_size = 0 |
|
beacon_memory_size = 0 |
|
raw_memory_size = 0 |
|
if self.sink_activations[0][0] is not None: |
|
sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim] |
|
if self.beacon_activations[0][0] is not None: |
|
beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim] |
|
if self.raw_activations[0][0] is not None: |
|
raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim] |
|
return sink_memory_size, beacon_memory_size, raw_memory_size |
|
|
|
def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None): |
|
""" |
|
Prepare inputs for the model. These inputs belong to the same sequence. |
|
""" |
|
|
|
|
|
|
|
self._device = input_ids.device |
|
|
|
|
|
if self.all_input_ids is None: |
|
self.all_input_ids = input_ids.cpu() |
|
else: |
|
self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1) |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, device=torch.device("cpu")) |
|
if self.all_attention_mask is None: |
|
self.all_attention_mask = attention_mask.cpu() |
|
else: |
|
self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1) |
|
|
|
|
|
if labels is not None: |
|
|
|
labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1) |
|
if self.all_labels is None: |
|
self.all_labels = labels.cpu() |
|
else: |
|
self.all_labels = torch.cat([self.all_labels, labels], dim=1) |
|
assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!" |
|
|
|
|
|
if skip_first is not None: |
|
assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!" |
|
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip." |
|
assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!" |
|
|
|
if skip_last is not None: |
|
skip_first = skip_first if skip_first is not None else 0 |
|
|
|
assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!" |
|
self.beacon_skip_first = skip_first |
|
self.beacon_skip_last = skip_last |
|
|
|
def set_compression_ratio(self, start_idx, end_idx): |
|
"""Choose a condensing ratio from self.config.beacon_ratio""" |
|
def filter_ratio(ratios, stride): |
|
valid_ratios = [] |
|
for ratio in ratios: |
|
|
|
if stride < ratio: |
|
continue |
|
|
|
if ratio > 0 and (stride % ratio) != 0: |
|
continue |
|
|
|
if ratio == 0 and self.training: |
|
previous_has_zero = -1 in self.all_beacon_sizes |
|
following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length |
|
if previous_has_zero or (not following_has_nonzero): |
|
continue |
|
valid_ratios.append(ratio) |
|
assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!" |
|
return valid_ratios |
|
|
|
def get_max_length(ratios): |
|
max_lengths = [] |
|
for compression_ratio in ratios: |
|
if compression_ratio > 0: |
|
|
|
max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window) |
|
else: |
|
max_lengths.append(self.max_position_embeddings) |
|
return max_lengths |
|
|
|
if len(self.config.beacon_ratio) == 1: |
|
return self.config.beacon_ratio[0] |
|
|
|
ratio_mix = self.config.beacon_ratio_mix |
|
|
|
beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride) |
|
|
|
if ratio_mix == "instance-random": |
|
if self.compression_ratio is None: |
|
beacon_ratio = self.rng.choice(beacon_ratio).tolist() |
|
self.compression_ratio = beacon_ratio |
|
else: |
|
beacon_ratio = self.compression_ratio |
|
|
|
elif ratio_mix == "step-random": |
|
beacon_ratio = self.rng.choice(beacon_ratio).tolist() |
|
|
|
elif ratio_mix == "sequence": |
|
if self.compression_ratio is None: |
|
self.compression_ratio = cycle(beacon_ratio) |
|
beacon_ratio = next(self.compression_ratio) |
|
|
|
elif "adapt" in ratio_mix: |
|
if self.compression_ratio is None: |
|
future_length = int(ratio_mix.split("-")[1]) |
|
sequence_length = self.all_input_ids.shape[1] + future_length |
|
max_lengths = get_max_length(beacon_ratio) |
|
|
|
valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length] |
|
if len(valid_max_lengths_and_indices): |
|
minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0] |
|
|
|
beacon_ratio = beacon_ratio[minimum_length_index] |
|
else: |
|
beacon_ratio = max(beacon_ratio) |
|
|
|
self.compression_ratio = beacon_ratio |
|
else: |
|
beacon_ratio = self.compression_ratio |
|
|
|
return beacon_ratio |
|
|
|
def step(self): |
|
|
|
|
|
|
|
if ( |
|
self.config.beacon_parallel_window > 1 |
|
and self.config.beacon_stride == self.config.beacon_window |
|
and 0 not in self.config.beacon_ratio |
|
and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window |
|
): |
|
input_ids_list = [] |
|
attention_mask_list = [] |
|
position_ids_list = [] |
|
labels_list = [] |
|
|
|
beacon_size_list = [] |
|
beacon_indices_list = [] |
|
|
|
for i in range(self.config.beacon_parallel_window): |
|
if i == 0: |
|
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step() |
|
else: |
|
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True) |
|
|
|
input_ids_list.append(_input_ids) |
|
attention_mask_list.append(_attention_mask) |
|
position_ids_list.append(_position_ids) |
|
labels_list.append(_labels) |
|
beacon_size_list.append(_past_key_values[0][2]) |
|
beacon_indices_list.append(_past_key_values[0][3]) |
|
|
|
if i == 0: |
|
past_key_values = _past_key_values |
|
if past_key_values[0][0] is None: |
|
mem_size = 0 |
|
else: |
|
mem_size = past_key_values[0][0].shape[self.k_seq_dim] |
|
|
|
else: |
|
|
|
assert _past_key_values[0][0] is None |
|
|
|
batch_size = self.all_input_ids.shape[0] |
|
|
|
seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1] |
|
|
|
input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token |
|
|
|
attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value |
|
position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len) |
|
|
|
beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2 |
|
if _labels is not None: |
|
|
|
labels = _labels.new_zeros((batch_size, seq_len)) - 100 |
|
else: |
|
labels = None |
|
|
|
start_idx = 0 |
|
position_offset = mem_size |
|
for i in range(self.config.beacon_parallel_window): |
|
beacon_size = beacon_size_list[i] |
|
|
|
|
|
_input_ids = input_ids_list[i] |
|
cur_seq_len = _input_ids.shape[1] |
|
input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids |
|
|
|
|
|
_attention_mask = attention_mask_list[i] |
|
_position_ids = position_ids_list[i] |
|
|
|
if i == 0: |
|
_attention_mask = _attention_mask[:, :, :, mem_size:] |
|
_position_ids = _position_ids[:, mem_size:] - mem_size |
|
|
|
attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask |
|
position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset |
|
|
|
|
|
_beacon_indices = beacon_indices_list[i] |
|
beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices |
|
|
|
|
|
if labels is not None: |
|
|
|
_labels = labels_list[i] |
|
labels[:, start_idx: start_idx + cur_seq_len] = _labels |
|
|
|
|
|
if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None: |
|
position_offset += 1 |
|
|
|
|
|
if i != self.config.beacon_parallel_window - 1: |
|
replicate_beacon_row_start = start_idx + cur_seq_len |
|
replicate_beacon_col_start = mem_size + start_idx + cur_seq_len |
|
|
|
attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1) |
|
|
|
attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0 |
|
|
|
position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:] |
|
|
|
start_idx += cur_seq_len + beacon_size |
|
position_offset += beacon_size |
|
|
|
|
|
attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0 |
|
|
|
|
|
for i, (key, value, _, _) in enumerate(past_key_values): |
|
past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices) |
|
|
|
|
|
self.beacon_indices = beacon_indices |
|
|
|
return input_ids, attention_mask, position_ids, past_key_values, labels |
|
|
|
else: |
|
return self._step() |
|
|
|
def _step(self, ignore_memory=False): |
|
""" |
|
Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
start_idx = self.start_idx |
|
|
|
end_idx = start_idx + self.beacon_window |
|
|
|
|
|
if end_idx > self.all_sequence_length: |
|
|
|
end_idx = self.all_sequence_length |
|
is_full_window = False |
|
else: |
|
is_full_window = True |
|
|
|
|
|
|
|
if self.training and end_idx == self.all_sequence_length: |
|
next_start_idx = start_idx |
|
is_full_window = False |
|
raw_size_to_cache = -1 |
|
beacon_size = 0 |
|
compression_ratio = -1 |
|
|
|
|
|
elif self.step_idx == 0 and self.beacon_skip_first is not None: |
|
end_idx = start_idx + self.beacon_skip_first |
|
assert end_idx <= self.all_sequence_length |
|
next_start_idx = end_idx |
|
is_full_window = True |
|
raw_size_to_cache = -1 |
|
beacon_size = 0 |
|
compression_ratio = -1 |
|
|
|
|
|
elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last: |
|
end_idx = min(start_idx + self.beacon_window, self.all_sequence_length) |
|
next_start_idx = end_idx |
|
is_full_window = False |
|
raw_size_to_cache = -1 |
|
beacon_size = 0 |
|
compression_ratio = -1 |
|
|
|
else: |
|
|
|
|
|
|
|
if self.config.beacon_pos == "append": |
|
if is_full_window: |
|
|
|
beacon_stride = self.beacon_stride |
|
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx) |
|
|
|
if compression_ratio > 0: |
|
|
|
beacon_size = beacon_stride // compression_ratio |
|
else: |
|
|
|
beacon_size = -1 |
|
|
|
|
|
next_start_idx = start_idx + beacon_stride |
|
|
|
raw_size_to_cache = end_idx - next_start_idx |
|
else: |
|
|
|
next_start_idx = start_idx |
|
|
|
raw_size_to_cache = -1 |
|
beacon_size = 0 |
|
compression_ratio = 0 |
|
|
|
elif self.config.beacon_pos == "interleave": |
|
|
|
input_size = end_idx - self.end_idx |
|
|
|
if self.is_full_window: |
|
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx) |
|
self.interleave_compression_ratio = compression_ratio |
|
else: |
|
compression_ratio = self.interleave_compression_ratio |
|
|
|
|
|
if compression_ratio > 0: |
|
|
|
beacon_size = (input_size + self.interleave_remainder) // compression_ratio |
|
else: |
|
|
|
beacon_size = -1 |
|
|
|
if is_full_window: |
|
|
|
next_start_idx = start_idx + self.beacon_stride |
|
|
|
raw_size_to_cache = 0 |
|
else: |
|
|
|
next_start_idx = start_idx |
|
|
|
raw_size_to_cache = -1 |
|
|
|
|
|
|
|
|
|
input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device) |
|
attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device) |
|
if self.all_labels is not None: |
|
labels = self.all_labels[:, self.end_idx: end_idx].to(self._device) |
|
else: |
|
labels = None |
|
batch_size = input_ids.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.beacon_pos == "append": |
|
|
|
if is_full_window and beacon_size > 0: |
|
input_ids = torch.cat([input_ids, input_ids.new_full((batch_size, beacon_size), self.beacon_token)], dim=1) |
|
|
|
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1) |
|
if labels is not None: |
|
labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1) |
|
|
|
elif self.config.beacon_pos == "interleave": |
|
input_len = input_ids.shape[1] |
|
if beacon_size > 0: |
|
|
|
input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token) |
|
raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device) |
|
interleave_start_idx = compression_ratio - self.interleave_remainder |
|
raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids) |
|
input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids) |
|
input_ids = input_ids_with_beacons |
|
|
|
attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1) |
|
attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask) |
|
attention_mask = attention_mask_with_beacons |
|
|
|
if labels is not None: |
|
labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100) |
|
labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels) |
|
labels = labels_with_beacons |
|
|
|
if compression_ratio > 0: |
|
|
|
self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio |
|
|
|
|
|
if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'): |
|
labels[:] = -100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
beacon_indices = (input_ids[0] == self.beacon_token).long() |
|
if self.is_full_window: |
|
self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device) |
|
|
|
beacon_indices = torch.cat([self.beacon_indices, beacon_indices]) |
|
|
|
self.beacon_indices = beacon_indices |
|
if is_full_window and beacon_size == -1: |
|
|
|
|
|
beacon_indices[:self.beacon_stride] = -1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_values = [] |
|
for layer_idx in range(self.config.num_hidden_layers): |
|
if ignore_memory: |
|
key, value = None, None |
|
else: |
|
sink_key, sink_value = self.sink_activations[layer_idx] |
|
beacon_key, beacon_value = self.beacon_activations[layer_idx] |
|
raw_key, raw_value = self.raw_activations[layer_idx] |
|
|
|
key = cat_tensor([ |
|
sink_key, beacon_key, raw_key, |
|
], dim=self.k_seq_dim) |
|
value = cat_tensor([ |
|
sink_value, beacon_value, raw_value, |
|
], dim=self.v_seq_dim) |
|
|
|
layer_past_key_values = (key, value, beacon_size, beacon_indices) |
|
past_key_values.append(layer_past_key_values) |
|
|
|
|
|
|
|
|
|
|
|
|
|
first_key = past_key_values[0][0] |
|
mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0 |
|
if mem_size > 0: |
|
attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1) |
|
|
|
input_length = input_ids.shape[1] |
|
position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1) |
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}." |
|
if 0 in attention_mask: |
|
pass |
|
else: |
|
attention_mask = None |
|
elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0): |
|
attention_mask = None |
|
else: |
|
attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids( |
|
attention_mask, |
|
position_ids, |
|
mem_size, |
|
beacon_size, |
|
compression_ratio, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.is_full_window = is_full_window |
|
|
|
self.raw_size_to_cache = raw_size_to_cache |
|
|
|
self.all_beacon_sizes.append(beacon_size) |
|
|
|
|
|
|
|
self.start_idx = next_start_idx |
|
self.end_idx = end_idx |
|
self.step_idx += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return input_ids, attention_mask, position_ids, past_key_values, labels |
|
|
|
def update_memory(self, past_key_values): |
|
""" |
|
Accumulate beacon activations and raw activations. |
|
""" |
|
for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values): |
|
|
|
previous_raw_key, previous_raw_value = self.raw_activations[layer_idx] |
|
|
|
if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None: |
|
assert key.shape[self.k_seq_dim] == self.beacon_skip_first |
|
assert value.shape[self.k_seq_dim] == self.beacon_skip_first |
|
self.sink_activations[layer_idx] = [ |
|
key, |
|
value, |
|
] |
|
|
|
continue |
|
|
|
|
|
if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0: |
|
|
|
|
|
self.sink_activations[layer_idx] = [ |
|
slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim), |
|
slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim), |
|
] |
|
|
|
if not self.is_full_window: |
|
|
|
|
|
assert self.raw_size_to_cache == -1 |
|
raw_key = cat_tensor([ |
|
previous_raw_key, |
|
key |
|
], dim=self.k_seq_dim) |
|
raw_value = cat_tensor([ |
|
previous_raw_value, |
|
value |
|
], dim=self.v_seq_dim) |
|
self.raw_activations[layer_idx] = (raw_key, raw_value) |
|
|
|
else: |
|
|
|
previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx] |
|
|
|
beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory( |
|
key, |
|
value, |
|
previous_beacon_key, |
|
previous_beacon_value, |
|
previous_raw_key, |
|
previous_raw_value, |
|
beacon_indices, |
|
) |
|
|
|
self.beacon_activations[layer_idx] = (beacon_key, beacon_value) |
|
self.raw_activations[layer_idx] = (raw_key, raw_value) |
|
|
|
def update_loss(self, batch_loss, valid_token_num): |
|
""" |
|
Accumulate loss for later perplexity computation and backward pass. |
|
""" |
|
if self.batch_loss is None: |
|
|
|
self.batch_loss = batch_loss * valid_token_num |
|
self.valid_token_num = valid_token_num |
|
else: |
|
|
|
self.batch_loss = self.batch_loss + batch_loss * valid_token_num |
|
self.valid_token_num = self.valid_token_num + valid_token_num |
|
|
|
def output(self, model_outputs): |
|
""" |
|
Override loss with accumulated loss. Update the next-token logits. |
|
""" |
|
|
|
if self.batch_loss is not None: |
|
|
|
loss = self.batch_loss.sum() / self.valid_token_num.sum() |
|
|
|
|
|
batch_loss = self.batch_loss / self.valid_token_num |
|
if (self.valid_token_num == 0).any(): |
|
batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.) |
|
|
|
|
|
model_outputs["loss"] = loss |
|
model_outputs["batch_loss"] = batch_loss |
|
|
|
|
|
beacon_size = self.all_beacon_sizes[-1] |
|
|
|
if beacon_size > 0: |
|
logits = model_outputs["logits"] |
|
beacon_indices = self.beacon_indices[-logits.shape[1]:] |
|
model_outputs["logits"] = logits[:, beacon_indices == 0] |
|
|
|
return model_outputs |
|
|
|
def _make_4d_attention_mask_and_position_ids( |
|
self, |
|
attention_mask, |
|
position_ids, |
|
mem_size, |
|
beacon_size, |
|
compression_ratio, |
|
): |
|
""" |
|
Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len). |
|
""" |
|
tgt_size = attention_mask.size(-1) - mem_size |
|
dtype = self.dtype |
|
min_value = self.min_value |
|
device = self._device |
|
batch_size, src_size = attention_mask.size() |
|
|
|
|
|
causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype) |
|
mask_cond = torch.arange(causal_mask.size(-1), device=device) |
|
causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0) |
|
causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1) |
|
causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size) |
|
|
|
expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size) |
|
invert_mask = 1.0 - expand_mask |
|
|
|
|
|
invert_mask.masked_fill_(invert_mask.bool(), min_value) |
|
|
|
attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value) |
|
|
|
if self.config.beacon_attn == "step-expansion": |
|
|
|
|
|
if self.config.beacon_pos == "append" and beacon_size > 0: |
|
window_size = self.beacon_window |
|
window_size_with_beacon = window_size + beacon_size |
|
beacon_start_idx = -beacon_size |
|
|
|
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size] |
|
|
|
|
|
beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio |
|
|
|
ordinal_arange = torch.arange(window_size, device=device) |
|
|
|
valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1) |
|
|
|
ordinal_attention_mask = torch.where(valid_pos, 0, min_value) |
|
|
|
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) |
|
|
|
if self.config.beacon_attend_prev: |
|
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1) |
|
|
|
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size] |
|
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None] |
|
position_ids[:, beacon_start_idx:] = beacon_position_ids |
|
else: |
|
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0) |
|
|
|
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size] |
|
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1 |
|
position_ids[:, beacon_start_idx:] = beacon_position_ids |
|
|
|
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask |
|
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask |
|
|
|
|
|
elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any(): |
|
assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!" |
|
|
|
beacon_indices = self.beacon_indices |
|
|
|
cur_position_ids = position_ids[:, -len(beacon_indices):] |
|
base_position = cur_position_ids[:, 0] - 1 |
|
|
|
position_template = cur_position_ids.new_ones(cur_position_ids.shape) |
|
position_template[:, compression_ratio + 1::compression_ratio + 1] = 0 |
|
cur_position_ids = base_position + position_template.cumsum(-1) |
|
position_ids[:, -len(beacon_indices):] = cur_position_ids |
|
|
|
cur_input_length = len(beacon_indices) |
|
cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:] |
|
|
|
cur_attention_mask[..., beacon_indices] = min_value |
|
|
|
input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:] |
|
input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0 |
|
|
|
elif self.config.beacon_attn == "segmentation": |
|
|
|
|
|
if self.config.beacon_pos == "append" and beacon_size > 0: |
|
window_size = self.beacon_window |
|
window_size_with_beacon = window_size + beacon_size |
|
beacon_start_idx = -beacon_size |
|
|
|
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size] |
|
|
|
|
|
indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1) |
|
|
|
ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value) |
|
ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0) |
|
|
|
|
|
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) |
|
|
|
if self.config.beacon_attend_prev: |
|
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1) |
|
|
|
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size) |
|
beacon_position_ids = beacon_position_ids + torch.arange(beacon_size) |
|
position_ids[:, beacon_start_idx:] = beacon_position_ids |
|
else: |
|
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0) |
|
|
|
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size) |
|
position_ids[:, beacon_start_idx:] = beacon_position_ids |
|
|
|
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask |
|
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask |
|
|
|
attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value |
|
|
|
elif self.config.beacon_pos == "interleave": |
|
raise NotImplementedError |
|
|
|
elif self.config.beacon_attn == "full-coverage": |
|
pass |
|
|
|
return attention_mask, position_ids |
|
|
|
def _extract_beacon_and_raw_memory( |
|
self, |
|
key, |
|
value, |
|
previous_beacon_key, |
|
previous_beacon_value, |
|
previous_raw_key, |
|
previous_raw_value, |
|
beacon_indices, |
|
): |
|
"""Extract beacon and raw memory from the returned key and value when the window is full.""" |
|
key = cat_tensor([ |
|
previous_raw_key, |
|
key |
|
], dim=self.k_seq_dim) |
|
value = cat_tensor([ |
|
previous_raw_value, |
|
value |
|
], dim=self.v_seq_dim) |
|
|
|
|
|
beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim) |
|
beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim) |
|
|
|
if self.config.beacon_accum: |
|
beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim) |
|
beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim) |
|
|
|
if self.raw_size_to_cache > 0: |
|
raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim) |
|
raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim) |
|
|
|
raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim) |
|
raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim) |
|
|
|
else: |
|
raw_key = None |
|
raw_value = None |
|
|
|
return beacon_key, beacon_value, raw_key, raw_value |
|
|
|
|
|
def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2): |
|
if x is None: |
|
return None |
|
if end == 0: |
|
return None |
|
if start == x.shape[dim]: |
|
return None |
|
if start is not None and start == end: |
|
return None |
|
if dim == 2: |
|
if index is not None: |
|
return x[:, :, index] |
|
elif start is None and end is not None: |
|
if step is None: |
|
return x[:, :, :end, ...] |
|
else: |
|
return x[:, :, :end:step, ...] |
|
elif start is not None and end is None: |
|
if step is None: |
|
return x[:, :, start:, ...] |
|
else: |
|
return x[:, :, start::step, ...] |
|
elif start is not None and end is not None: |
|
if step is None: |
|
return x[:, :, start:end, ...] |
|
else: |
|
return x[:, :, start:end:step, ...] |
|
elif dim == 1: |
|
if index is not None: |
|
return x[:, :, index] |
|
elif start is None and end is not None: |
|
if step is None: |
|
return x[:, :end, ...] |
|
else: |
|
return x[:, :end:step, ...] |
|
elif start is not None and end is None: |
|
if step is None: |
|
return x[:, start:, ...] |
|
else: |
|
return x[:, start::step, ...] |
|
elif start is not None and end is not None: |
|
if step is None: |
|
return x[:, start:end, ...] |
|
else: |
|
return x[:, start:end:step, ...] |
|
else: |
|
raise NotImplementedError |
|
|
|
def cat_tensor(list_of_tensors, dim=-1): |
|
list_of_tensors = [t for t in list_of_tensors if t is not None] |
|
if len(list_of_tensors) > 1: |
|
result = torch.cat(list_of_tensors, dim=dim) |
|
elif len(list_of_tensors) == 1: |
|
result = list_of_tensors[0] |
|
else: |
|
result = None |
|
return result |
|
|
|
def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2): |
|
new_activations = [] |
|
for key, value in activations: |
|
new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim) |
|
new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim) |
|
new_activations.append([new_key, new_value]) |
|
return new_activations |
|
|
|
def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2): |
|
assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}." |
|
|
|
new_activations = [] |
|
for layer_idx in range(len(list_of_activations[0])): |
|
keys = [x[layer_idx][0] for x in list_of_activations] |
|
values = [x[layer_idx][1] for x in list_of_activations] |
|
|
|
new_key = cat_tensor(keys, dim=k_seq_dim) |
|
new_value = cat_tensor(values, dim=v_seq_dim) |
|
new_activations.append([new_key, new_value]) |
|
return new_activations |
|
|
|
def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")): |
|
""" Interleave main_activations and augment_activations according to main_span and augment_span. |
|
|
|
Args: |
|
main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in. |
|
augment_span: a list of tuples (start_idx, end_idx) |
|
""" |
|
assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!" |
|
assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!" |
|
|
|
new_activations = [] |
|
for layer_idx in range(len(main_activations)): |
|
main_key, main_value = main_activations[layer_idx] |
|
augment_key, augment_value = augment_activations[layer_idx] |
|
|
|
sliced_keys = [] |
|
sliced_values = [] |
|
|
|
augment_idx = 0 |
|
for start, end in main_spans: |
|
if start is None and end is None: |
|
|
|
augment_start, augment_end = augment_spans[augment_idx] |
|
sliced_key = slice_tensor( |
|
augment_key, |
|
start=augment_start, |
|
end=augment_end, |
|
dim=k_seq_dim |
|
).to(device) |
|
sliced_value = slice_tensor( |
|
augment_value, |
|
start=augment_start, |
|
end=augment_end, |
|
dim=v_seq_dim |
|
).to(device) |
|
|
|
else: |
|
sliced_key = slice_tensor( |
|
main_key, |
|
start=start, |
|
end=end, |
|
dim=k_seq_dim |
|
) |
|
sliced_value = slice_tensor( |
|
main_value, |
|
start=start, |
|
end=end, |
|
dim=v_seq_dim |
|
) |
|
|
|
sliced_keys.append(sliced_key) |
|
sliced_values.append(sliced_value) |
|
|
|
new_key = cat_tensor(sliced_keys, dim=k_seq_dim) |
|
new_value = cat_tensor(sliced_values, dim=v_seq_dim) |
|
new_activations.append([new_key, new_value]) |
|
|
|
return new_activations |
|
|
|
def softmax(x:np.ndarray, axis=-1, temperature=1): |
|
if isinstance(x, list): |
|
x = np.array(x) |
|
x = x / temperature |
|
x = x - x.max(axis=axis, keepdims=True) |
|
y = np.exp(x) |
|
return y / y.sum(axis=axis, keepdims=True) |
|
|
|
def l1_norm(x): |
|
sum_x = sum(x) |
|
x = [y/sum_x for y in x] |
|
return x |
|
|
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class Qwen2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Qwen2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, q, k, position_ids): |
|
seq_len = max(position_ids.max().item() + 1, k.shape[2]) |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype) |
|
|
|
|
|
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) |
|
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) |
|
|
|
q_cos = k_cos[..., -q.shape[2]:, :] |
|
q_sin = k_sin[..., -q.shape[2]:, :] |
|
|
|
q_embed = (q * q_cos) + (rotate_half(q) * q_sin) |
|
k_embed = (k * k_cos) + (rotate_half(k) * k_sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class Qwen2LinearScalingRotaryEmbedding(Qwen2RotaryEmbedding): |
|
"""Qwen2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class Qwen2DynamicNTKScalingRotaryEmbedding(Qwen2RotaryEmbedding): |
|
"""Qwen2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class Qwen2YarnRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128): |
|
super().__init__() |
|
|
|
self.base = base |
|
self.dim = dim |
|
self.scaling_factor = scaling_factor |
|
self.beta_slow = beta_slow |
|
self.beta_fast = beta_fast |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _get_factor(self, device, dtype): |
|
|
|
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base)) |
|
fast_dim = max(math.floor(fast_dim), 0) |
|
|
|
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base)) |
|
slow_dim = min(math.ceil(slow_dim), self.dim - 1) |
|
|
|
if fast_dim == slow_dim: |
|
slow_dim += 0.001 |
|
|
|
|
|
dim_arange = torch.arange(0, self.dim // 2, device=device, dtype=torch.float32) |
|
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim) |
|
dim_factor = torch.clamp(dim_factor, 0, 1) |
|
|
|
|
|
return (1 - dim_factor) |
|
|
|
def _get_temperature(self): |
|
if self.scaling_factor <= 1: |
|
return 1.0 |
|
return 0.07 * math.log(self.scaling_factor) + 1.0 |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
dim_arange = torch.arange(0, self.dim, 2, device=device) / self.dim |
|
|
|
freq = self.base ** dim_arange |
|
theta = 1 / freq |
|
interleave_theta = theta / self.scaling_factor |
|
|
|
factor = self._get_factor(device, dtype) |
|
yarn_theta = factor * theta + (1 - factor) * interleave_theta |
|
self.register_buffer("inv_freq", yarn_theta, persistent=False) |
|
|
|
t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
|
|
temperature = self._get_temperature() |
|
|
|
self.register_buffer("cos_cached", (emb.cos() * temperature).to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", (emb.sin() * temperature).to(dtype), persistent=False) |
|
self.max_seq_len_cached = seq_len |
|
|
|
def forward(self, q, k, position_ids): |
|
seq_len = max(position_ids.max().item() + 1, k.shape[2]) |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.scaling_factor = seq_len / self.max_position_embeddings |
|
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype) |
|
|
|
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) |
|
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) |
|
|
|
q_cos = k_cos[..., -q.shape[2]:, :] |
|
q_sin = k_sin[..., -q.shape[2]:, :] |
|
|
|
q_embed = (q * q_cos) + (rotate_half(q) * q_sin) |
|
k_embed = (k * k_cos) + (rotate_half(k) * k_sin) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
class Qwen2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
if "mlp" in config.beacon_param: |
|
self.beacon_up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.beacon_up_proj.weight.data.zero_() |
|
self.beacon_up_proj._is_hf_initialized = True |
|
|
|
self.beacon_down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.beacon_down_proj.weight.data.zero_() |
|
self.beacon_down_proj._is_hf_initialized = True |
|
|
|
def _init_beacon_proj(self, missing_keys): |
|
"""Initialize the beacon projection weight with that of the ordinal projection.""" |
|
if "mlp" in self.config.beacon_param: |
|
if is_deepspeed_zero3_enabled(): |
|
|
|
|
|
|
|
|
|
import deepspeed |
|
params = [self.up_proj.weight, self.down_proj.weight, self.beacon_up_proj.weight, self.beacon_down_proj.weight] |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
if (self.beacon_up_proj.weight.sum(-1) == 0).any() or (self.beacon_up_proj.weight > 1e29).any(): |
|
self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data |
|
self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data |
|
else: |
|
if any("beacon_up_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data |
|
self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data |
|
|
|
def forward(self, x, beacon_size, beacon_indices): |
|
if "mlp" in self.config.beacon_param: |
|
|
|
if beacon_size > 0: |
|
cur_beacon_indices = beacon_indices[-x.shape[1]:] |
|
ordinal_hidden_states = x[:, cur_beacon_indices == 0] |
|
beacon_hidden_states = x[:, cur_beacon_indices == 1] |
|
|
|
ordinal_down_proj = self.down_proj(self.act_fn(self.gate_proj(ordinal_hidden_states)) * self.up_proj(ordinal_hidden_states)) |
|
beacon_down_proj = self.beacon_down_proj(self.act_fn(self.gate_proj(beacon_hidden_states)) * self.beacon_up_proj(beacon_hidden_states)) |
|
|
|
down_proj = beacon_down_proj.new_ones(x.shape) |
|
down_proj[:, beacon_indices == 0] = ordinal_down_proj |
|
down_proj[:, beacon_indices == 1] = beacon_down_proj |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
return down_proj |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class Qwen2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self._init_rope() |
|
|
|
|
|
|
|
|
|
if "q" in config.beacon_param: |
|
self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None) |
|
|
|
self.beacon_q_proj.weight.data.zero_() |
|
self.beacon_q_proj._is_hf_initialized = True |
|
if "k" in config.beacon_param: |
|
self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None) |
|
self.beacon_k_proj.weight.data.zero_() |
|
self.beacon_k_proj._is_hf_initialized = True |
|
if "v" in config.beacon_param: |
|
self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None) |
|
self.beacon_v_proj.weight.data.zero_() |
|
self.beacon_v_proj._is_hf_initialized = True |
|
if "o" in config.beacon_param: |
|
self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None) |
|
self.beacon_o_proj.weight.data.zero_() |
|
self.beacon_o_proj._is_hf_initialized = True |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = Qwen2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = Qwen2LinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = Qwen2DynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "yarn": |
|
self.rotary_emb = Qwen2YarnRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "yarn-t": |
|
self.rotary_emb = Qwen2YarnDynamicTemperatureRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "yarn-t-logn": |
|
self.rotary_emb = Qwen2YarnDynamicTemperatureLogNRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def _init_beacon_proj(self, missing_keys): |
|
"""Initialize the beacon projection weight with that of the ordinal projection.""" |
|
beacon_param = self.config.beacon_param |
|
|
|
if is_deepspeed_zero3_enabled(): |
|
|
|
|
|
|
|
|
|
import deepspeed |
|
if "q" in beacon_param: |
|
params = [self.beacon_q_proj.weight, self.q_proj.weight] |
|
if self.q_proj.bias is not None: |
|
params.extend([self.beacon_q_proj.bias, self.q_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any(): |
|
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data |
|
if self.q_proj.bias is not None: |
|
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data |
|
if "k" in beacon_param: |
|
params = [self.beacon_k_proj.weight, self.k_proj.weight] |
|
if self.k_proj.bias is not None: |
|
params.extend([self.beacon_k_proj.bias, self.k_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any(): |
|
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data |
|
if self.k_proj.bias is not None: |
|
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data |
|
if "v" in beacon_param: |
|
params = [self.beacon_v_proj.weight, self.v_proj.weight] |
|
if self.v_proj.bias is not None: |
|
params.extend([self.beacon_v_proj.bias, self.v_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any(): |
|
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data |
|
if self.v_proj.bias is not None: |
|
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data |
|
if "o" in beacon_param: |
|
params = [self.beacon_o_proj.weight, self.o_proj.weight] |
|
if self.o_proj.bias is not None: |
|
params.extend([self.beacon_o_proj.bias, self.o_proj.bias]) |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any(): |
|
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data |
|
if self.o_proj.bias is not None: |
|
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data |
|
else: |
|
|
|
if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys): |
|
|
|
|
|
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data |
|
if self.q_proj.bias is not None: |
|
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data |
|
if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data |
|
if self.k_proj.bias is not None: |
|
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data |
|
if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data |
|
if self.v_proj.bias is not None: |
|
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data |
|
if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data |
|
if self.o_proj.bias is not None: |
|
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices): |
|
if beacon_size > 0: |
|
|
|
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:] |
|
|
|
ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0] |
|
beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1] |
|
|
|
if "q" in self.config.beacon_param: |
|
ordinal_query_states = self.q_proj(ordinal_hidden_states) |
|
beacon_query_states = self.beacon_q_proj(beacon_hidden_states) |
|
query_states = beacon_query_states.new_zeros((ordinal_query_states.shape[0], cur_beacon_indices.shape[0], ordinal_query_states.shape[2])) |
|
query_states[:, cur_beacon_indices == 0] = ordinal_query_states |
|
query_states[:, cur_beacon_indices == 1] = beacon_query_states |
|
|
|
if (cur_beacon_indices == 2).any(): |
|
query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, :(cur_beacon_indices == 2).sum()] |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
|
|
if "k" in self.config.beacon_param: |
|
ordinal_key_states = self.k_proj(ordinal_hidden_states) |
|
beacon_key_states = self.beacon_k_proj(beacon_hidden_states) |
|
key_states = beacon_key_states.new_zeros((ordinal_key_states.shape[0], cur_beacon_indices.shape[0], ordinal_key_states.shape[2])) |
|
key_states[:, cur_beacon_indices == 0] = ordinal_key_states |
|
key_states[:, cur_beacon_indices == 1] = beacon_key_states |
|
|
|
if (cur_beacon_indices == 2).any(): |
|
key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, :(cur_beacon_indices == 2).sum()] |
|
|
|
else: |
|
key_states = self.k_proj(hidden_states) |
|
|
|
if "v" in self.config.beacon_param: |
|
ordinal_value_states = self.v_proj(ordinal_hidden_states) |
|
beacon_value_states = self.beacon_v_proj(beacon_hidden_states) |
|
value_states = beacon_value_states.new_zeros((ordinal_value_states.shape[0], cur_beacon_indices.shape[0], ordinal_value_states.shape[2])) |
|
value_states[:, cur_beacon_indices == 0] = ordinal_value_states |
|
value_states[:, cur_beacon_indices == 1] = beacon_value_states |
|
|
|
if (cur_beacon_indices == 2).any(): |
|
value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, :(cur_beacon_indices == 2).sum()] |
|
else: |
|
value_states = self.v_proj(hidden_states) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
return query_states, key_states, value_states |
|
|
|
def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices): |
|
if beacon_size > 0: |
|
|
|
cur_beacon_indices = beacon_indices[-attn_output.shape[1]:] |
|
|
|
if "o" in self.config.beacon_param: |
|
ordinal_attn_output = self.o_proj(attn_output[:, cur_beacon_indices == 0]) |
|
beacon_attn_output = self.beacon_o_proj(attn_output[:, cur_beacon_indices == 1]) |
|
attn_output = beacon_attn_output.new_zeros(attn_output.shape) |
|
attn_output[:, cur_beacon_indices == 0] = ordinal_attn_output |
|
attn_output[:, cur_beacon_indices == 1] = beacon_attn_output |
|
|
|
|
|
|
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
|
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
past_key_value = (key_states, value_states, beacon_size, beacon_indices) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class Qwen2SdpaAttention(Qwen2Attention): |
|
""" |
|
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
past_key_value = (key_states, value_states, beacon_size, beacon_indices) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
class Qwen2FlashAttention2(Qwen2Attention): |
|
""" |
|
Qwen2 flash attention module. This module inherits from `Qwen2Attention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
|
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
past_key_value = (key_states, value_states, beacon_size, beacon_indices) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
QWEN2_ATTENTION_CLASSES = { |
|
"eager": Qwen2Attention, |
|
"sdpa": Qwen2SdpaAttention, |
|
"flash_attention_2": Qwen2FlashAttention2, |
|
} |
|
|
|
|
|
class Qwen2DecoderLayer(nn.Module): |
|
def __init__(self, config: Qwen2Config, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = Qwen2MLP(config) |
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
|
|
past_key, past_value, beacon_size, beacon_indices = past_key_value |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states, beacon_size, beacon_indices) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
QWEN2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Qwen2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
|
|
|
|
class Qwen2PreTrainedModel(PreTrainedModel): |
|
config_class = Qwen2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Qwen2DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
QWEN2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2Model(Qwen2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] |
|
|
|
Args: |
|
config: Qwen2Config |
|
""" |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx) |
|
self.beacon_embed_tokens._is_hf_initialized = True |
|
|
|
self.layers = nn.ModuleList( |
|
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
self.image_idx=0 |
|
|
|
def _init_beacon_embed(self, missing_keys): |
|
"""Initialize the beacon token embedding with that of the eos token.""" |
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight] |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.beacon_embed_tokens.weight == 0).all(): |
|
if self.config.beacon_embed_init == "bos": |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] |
|
elif self.config.beacon_embed_init == "eos": |
|
if isinstance(self.config.eos_token_id, list): |
|
eos_token_id = self.config.eos_token_id[0] |
|
else: |
|
eos_token_id = self.config.eos_token_id |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] |
|
else: |
|
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") |
|
else: |
|
if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys): |
|
if self.config.beacon_embed_init == "bos": |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] |
|
elif self.config.beacon_embed_init == "eos": |
|
if isinstance(self.config.eos_token_id, list): |
|
eos_token_id = self.config.eos_token_id[0] |
|
else: |
|
eos_token_id = self.config.eos_token_id |
|
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] |
|
else: |
|
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
image_features:Optional[torch.Tensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
use_cache = True |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
past_key, past_value, beacon_size, beacon_indices = past_key_values[0] |
|
|
|
|
|
if beacon_size > 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cur_beacon_indices = beacon_indices[-input_ids.shape[1]:] |
|
beacon_input_ids = input_ids[:, cur_beacon_indices > 0] |
|
|
|
special_token = self.config.vocab_size -1 |
|
inputs_embeds = torch.zeros(*input_ids.shape, image_features.shape[-1], device=input_ids.device, dtype=image_features.dtype) |
|
|
|
batch_size, seq_len = input_ids.shape |
|
|
|
adjusted_image_idx=0 |
|
for batch_idx in range(batch_size): |
|
for seq_idx in range(seq_len): |
|
if input_ids[batch_idx, seq_idx] == special_token: |
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx] |
|
adjusted_image_idx+=1 |
|
|
|
count = (input_ids == special_token).sum().item() |
|
self.image_idx += count |
|
|
|
if self.image_idx==image_features.shape[0]: |
|
|
|
self.image_idx=0 |
|
|
|
|
|
|
|
beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size) |
|
|
|
inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds |
|
|
|
else: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:] |
|
ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0] |
|
beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1] |
|
|
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_value, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
|
|
|
|
class LlavaQwenConfig(Qwen2Config): |
|
model_type = "llava_qwen" |
|
|
|
|
|
class LlavaQwenModel(LlavaMetaModel, Qwen2Model): |
|
config_class = LlavaQwenConfig |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super(LlavaQwenModel, self).__init__(config) |
|
|
|
|
|
class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaQwenConfig |
|
|
|
def __init__(self, config): |
|
|
|
Qwen2ForCausalLM.__init__(self, config) |
|
config.model_type = "llava_qwen" |
|
config.rope_scaling = None |
|
|
|
self.model = LlavaQwenModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
"""Override the default from_pretrained to extend vocab size according to beacon_size.""" |
|
kwargs.update(output_loading_info=True) |
|
model, loading_info = super().from_pretrained(*args, **kwargs) |
|
|
|
|
|
config = model.config |
|
model.memory = Memory( |
|
model_config=config, |
|
k_seq_dim=2, |
|
v_seq_dim=2, |
|
) |
|
|
|
missing_keys = loading_info["missing_keys"] |
|
|
|
|
|
model.model._init_beacon_embed(missing_keys) |
|
|
|
for layer in model.model.layers: |
|
layer.self_attn._init_beacon_proj(missing_keys) |
|
layer.mlp._init_beacon_proj(missing_keys) |
|
|
|
return model |
|
|
|
def _native_forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
shift_labels: Optional[bool] = True, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
image_features: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple, BeaconModelOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if past_key_values is None: |
|
|
|
past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)] |
|
|
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
image_features=image_features |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
batch_loss = None |
|
valid_token_num = None |
|
|
|
|
|
if labels is not None: |
|
loss, batch_loss, valid_token_num = compute_loss(logits, labels, shift=shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return BeaconModelOutput( |
|
loss=loss, |
|
batch_loss=batch_loss, |
|
valid_token_num=valid_token_num, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def _beacon_forward(self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
beacon_skip_first: Optional[int] = None, |
|
beacon_skip_last: Optional[int] = None, |
|
image_features:Optional[torch.Tensor] = None |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.memory.prepare( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
labels=labels, |
|
skip_first=beacon_skip_first, |
|
skip_last=beacon_skip_last, |
|
) |
|
|
|
|
|
|
|
|
|
while not self.memory.finish: |
|
|
|
|
|
|
|
input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step() |
|
|
|
|
|
|
|
outputs = self._native_forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels, |
|
|
|
shift_labels=False, |
|
image_features=image_features |
|
) |
|
|
|
|
|
|
|
|
|
self.memory.update_memory(outputs.past_key_values) |
|
|
|
|
|
|
|
if labels is not None: |
|
|
|
self.memory.update_loss(outputs.batch_loss, outputs.valid_token_num) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self.memory.output(outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return outputs |
|
|
|
def forward(self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
image_features: Optional[torch.FloatTensor] = None, |
|
beacon_skip_first: Optional[int] = None, |
|
beacon_skip_last: Optional[int] = None, |
|
return_dict: Optional[bool] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
if image_features is None: |
|
if input_ids.shape[1] != 1: |
|
|
|
|
|
image_features=self.get_image_features(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)[0] |
|
|
|
|
|
num_tokens=image_features.shape[0] |
|
|
|
|
|
|
|
|
|
if -200 in input_ids: |
|
start_value = -200 |
|
if num_tokens !=0: |
|
insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item() |
|
negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device) |
|
if labels !=None: |
|
ignore_labels = torch.full((1, num_tokens), -100, device=labels.device, dtype=labels.dtype) |
|
before_labels = labels[:, :insert_index] |
|
after_labels = labels[:, insert_index + 1:] |
|
labels = torch.cat((before_labels, ignore_labels, after_labels), dim=1) |
|
|
|
before_input_ids = input_ids[:, :insert_index] |
|
after_input_ids = input_ids[:, insert_index + 1:] |
|
input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1) |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
input_ids[input_ids < 0] = self.config.vocab_size-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
beacon_skip_first=14 |
|
beacon_skip_last=beacon_skip_first + num_tokens |
|
|
|
with optional_grad_ctx(with_grad=self.training): |
|
|
|
if hasattr(self, "_enable_beacon") and self._enable_beacon == False: |
|
return self._native_forward(input_ids, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict) |
|
else: |
|
|
|
return self._beacon_forward(input_ids, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
beacon_skip_first, |
|
beacon_skip_last, |
|
image_features) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
beacon_skip_first: Optional[int] = None, |
|
beacon_skip_last: Optional[int] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
|
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
|
|
if images is not None: |
|
image_features=self.get_image_features(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes) |
|
image_features=torch.stack(image_features).squeeze(0) |
|
kwargs["image_features"] = image_features |
|
else: |
|
inputs_embeds = self.get_model().embed_tokens(inputs) |
|
|
|
|
|
|
|
|
|
num_tokens=image_features.shape[0] |
|
|
|
beacon_skip_first = (inputs == -200).nonzero(as_tuple=True)[1].item() |
|
|
|
|
|
|
|
if beacon_skip_last==None: |
|
beacon_skip_last = beacon_skip_first + num_tokens |
|
|
|
if -200 in inputs: |
|
start_value = -200 |
|
input_ids=inputs |
|
if num_tokens !=0: |
|
insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item() |
|
negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device) |
|
before_input_ids = input_ids[:, :insert_index] |
|
after_input_ids = input_ids[:, insert_index + 1:] |
|
input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1) |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
input_ids[input_ids < 0] = self.config.vocab_size-1 |
|
inputs=input_ids |
|
|
|
|
|
return super().generate(position_ids=position_ids, attention_mask=attention_mask,inputs=inputs,beacon_skip_first=beacon_skip_first, beacon_skip_last= beacon_skip_last, **kwargs) |
|
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
model_inputs = {"input_ids": input_ids} |
|
model_inputs["beacon_skip_first"]=beacon_skip_first |
|
model_inputs["beacon_skip_last"]=beacon_skip_last |
|
|
|
if 'image_features' in kwargs: |
|
model_inputs["image_features"] = kwargs['image_features'] |
|
|
|
return model_inputs |
|
|
|
|
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
AutoConfig.register("llava_qwen", LlavaQwenConfig) |
|
AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenForCausalLM) |
|
|