# Copyright 2024 Hao Zhang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union, Dict import torch import torch.nn as nn import time import transformers from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) # from ...constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from videoxlpro.videoxlpro.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM import inspect import math import warnings import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.integrations import is_deepspeed_zero3_enabled from .configuration_videoxlpro_llavaqwen import Qwen2Config from videoxlpro.videoxlpro.train.modeling_utils import optional_grad_ctx, compute_loss, BeaconModelOutput if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" _CONFIG_FOR_DOC = "Qwen2Config" QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Qwen/Qwen2-7B-beta", # See all Qwen2 models at https://huggingface.co/models?filter=qwen2 ] import os import torch import time import numpy as np import torch.distributed as dist from transformers.utils import logging from transformers import AutoTokenizer from itertools import cycle from typing import List logger = logging.get_logger(__name__) class Memory(torch.nn.Module): def __init__( self, model_config, k_seq_dim:int=2, v_seq_dim:int=2, ): """Setup necessary attributes.""" super().__init__() self.config = model_config # initialize necessary parameters self.k_seq_dim = k_seq_dim self.v_seq_dim = v_seq_dim self.rng = np.random.default_rng(42) self._post_validation() self.reset() @property def beacon_token(self): return self.config.vocab_size def _post_validation(self, verbose=True): assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!" for ratio in self.config.beacon_ratio: assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!" assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!" assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!" # assert self.config.beacon_pos in ["append", "interleave"], f"beacon_pos {self.config.beacon_pos} not implemented!" if self.config.beacon_pos == "interleave": assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode." if self.config.beacon_parallel_window > 1: assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!" self._cpu = torch.device("cpu") if verbose: info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..." logger.info(info) def set(self, verbose=True, **kwargs): """ Set attributes out of the constructor. """ for k, v in kwargs.items(): setattr(self.config, k, v) self._post_validation(verbose=verbose) def reset(self): """Initialize attributes for a new sequence.""" # the cursor pointing to the start of the current window self.start_idx = 0 # the cursor pointing to the end of the current window self.end_idx = 0 # the beacon sizes of all strides self.all_beacon_sizes = [] # the loss per batch self.batch_loss = None # the valid token number per batch self.valid_token_num = None # the step index for processing the input_ids self.step_idx = 0 # used in set_compression_ratio self.compression_ratio = None # the previous inputs is a full window or not, defaults to True self.is_full_window = True # the number of raw activations to preserve in update_memory (only useful when beacon_stride < beacon_window) self.raw_size_to_cache = 0 # the number of tokens in previous stride that should be compressed by the upcoming beacon self.interleave_remainder = 0 # compression ratio for the unfinished window self.interleave_compression_ratio = None self.beacon_indices = None self.all_input_ids = None self.all_attention_mask = None self.all_labels = None # NOTE: will be reset in prepare() self.beacon_skip_first = None self.beacon_skip_last = None # the raw activations of recent tokens self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)] # the attention sink activations self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)] # the beacon activations self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)] @property def all_sequence_length(self): if self.all_input_ids is None: return 0 else: return self.all_input_ids.shape[1] @property def batch_size(self): if self.all_input_ids is None: return 0 else: return self.all_input_ids.shape[0] @property def finish(self): is_finish = self.end_idx == self.all_sequence_length return is_finish @property def dtype(self): return self.config.torch_dtype @property def min_value(self): return torch.finfo(self.dtype).min @property def max_position_embeddings(self): max_position_embeddings = self.config.max_position_embeddings if getattr(self.config, "rope_scaling", None) is not None: scaling_factor = self.config.rope_scaling["factor"] max_position_embeddings = max_position_embeddings * scaling_factor return max_position_embeddings @property def beacon_window(self): if ( self.beacon_skip_last is not None and self.start_idx < self.beacon_skip_last and self.start_idx + self.config.beacon_window > self.beacon_skip_last ): #print(self.start_idx + self.config.beacon_window,self.beacon_skip_last) #print(self.beacon_skip_last,self.start_idx < self.beacon_skip_last,self.start_idx + self.config.beacon_window > self.beacon_skip_last) return self.beacon_skip_last - self.start_idx else: #print(self.start_idx + self.config.beacon_window,self.beacon_skip_last) #print(self.beacon_skip_last,self.start_idx < self.beacon_skip_last,self.start_idx + self.config.beacon_window > self.beacon_skip_last) return self.config.beacon_window @property def beacon_stride(self): if ( self.beacon_skip_last is not None and self.start_idx < self.beacon_skip_last and self.start_idx + self.config.beacon_window > self.beacon_skip_last ): return self.beacon_skip_last - self.start_idx else: return self.config.beacon_stride def get_memory(self): past_key_values = [] for layer_idx in range(self.config.num_hidden_layers): sink_key, sink_value = self.sink_activations[layer_idx] beacon_key, beacon_value = self.beacon_activations[layer_idx] raw_key, raw_value = self.raw_activations[layer_idx] key = cat_tensor([ sink_key, beacon_key, raw_key, ], dim=self.k_seq_dim) value = cat_tensor([ sink_value, beacon_value, raw_value, ], dim=self.v_seq_dim) layer_past_key_values = (key, value) past_key_values.append(layer_past_key_values) return past_key_values def get_memory_size(self): """ Sink memory size, beacon memory size and raw memory size. """ sink_memory_size = 0 beacon_memory_size = 0 raw_memory_size = 0 if self.sink_activations[0][0] is not None: sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim] if self.beacon_activations[0][0] is not None: beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim] if self.raw_activations[0][0] is not None: raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim] return sink_memory_size, beacon_memory_size, raw_memory_size def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None): """ Prepare inputs for the model. These inputs belong to the same sequence. """ # assert input_ids.shape[0] == 1, "Make sure the batch size is 1!" # assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!" self._device = input_ids.device # accumulate input_ids if self.all_input_ids is None: self.all_input_ids = input_ids.cpu() else: self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1) # accumulate attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, device=torch.device("cpu")) if self.all_attention_mask is None: self.all_attention_mask = attention_mask.cpu() else: self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1) # accumulate labels if exisits if labels is not None: # rotate labels in advance so that the loss of the last token is not ignored in every window labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1) if self.all_labels is None: self.all_labels = labels.cpu() else: self.all_labels = torch.cat([self.all_labels, labels], dim=1) assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!" # how many tokens to skip at the beginning of the sequence? (They will be packed in a single chunk and processed by the model, after which their activations will be cached in sink_activations.) if skip_first is not None: assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!" assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip." assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!" # stop compression after how many tokens if skip_last is not None: skip_first = skip_first if skip_first is not None else 0 # assert (skip_last - skip_first) % self.config.beacon_window == 0, f"skip_last ({skip_last}) - skip_first ({skip_first}) = {skip_last - skip_first} is not divisible by window size {self.config.beacon_window}" assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!" self.beacon_skip_first = skip_first self.beacon_skip_last = skip_last def set_compression_ratio(self, start_idx, end_idx): """Choose a condensing ratio from self.config.beacon_ratio""" def filter_ratio(ratios, stride): valid_ratios = [] for ratio in ratios: # stride must be bigger than condensing ratio because we there must be at least one beacon if stride < ratio: continue # the stride must be evenly divisible by condensing ratio if ratio > 0 and (stride % ratio) != 0: continue # when training, ratio=0 is valid if previous windows contain beacon or later windows contain beacon if ratio == 0 and self.training: previous_has_zero = -1 in self.all_beacon_sizes following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length if previous_has_zero or (not following_has_nonzero): continue valid_ratios.append(ratio) assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!" return valid_ratios def get_max_length(ratios): max_lengths = [] for compression_ratio in ratios: if compression_ratio > 0: # NOTE: here we must use the scaled position embeddings max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window) else: max_lengths.append(self.max_position_embeddings) return max_lengths if len(self.config.beacon_ratio) == 1: return self.config.beacon_ratio[0] ratio_mix = self.config.beacon_ratio_mix beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride) if ratio_mix == "instance-random": if self.compression_ratio is None: beacon_ratio = self.rng.choice(beacon_ratio).tolist() self.compression_ratio = beacon_ratio else: beacon_ratio = self.compression_ratio elif ratio_mix == "step-random": beacon_ratio = self.rng.choice(beacon_ratio).tolist() elif ratio_mix == "sequence": if self.compression_ratio is None: self.compression_ratio = cycle(beacon_ratio) beacon_ratio = next(self.compression_ratio) elif "adapt" in ratio_mix: if self.compression_ratio is None: future_length = int(ratio_mix.split("-")[1]) sequence_length = self.all_input_ids.shape[1] + future_length max_lengths = get_max_length(beacon_ratio) # ascendingly sort the max lengths valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length] if len(valid_max_lengths_and_indices): minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0] # use the minimal possible length for this sequence (the smallest fold ratio) beacon_ratio = beacon_ratio[minimum_length_index] else: beacon_ratio = max(beacon_ratio) # logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {beacon_ratio}.") self.compression_ratio = beacon_ratio else: beacon_ratio = self.compression_ratio return beacon_ratio def step(self): # parallel does not support stride < window # parallel does not support non-compression # the input_ids is not long enough for parallel if ( self.config.beacon_parallel_window > 1 and self.config.beacon_stride == self.config.beacon_window and 0 not in self.config.beacon_ratio and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window ): input_ids_list = [] attention_mask_list = [] position_ids_list = [] labels_list = [] beacon_size_list = [] beacon_indices_list = [] for i in range(self.config.beacon_parallel_window): if i == 0: _input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step() else: _input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True) input_ids_list.append(_input_ids) attention_mask_list.append(_attention_mask) position_ids_list.append(_position_ids) labels_list.append(_labels) beacon_size_list.append(_past_key_values[0][2]) beacon_indices_list.append(_past_key_values[0][3]) if i == 0: past_key_values = _past_key_values if past_key_values[0][0] is None: mem_size = 0 else: mem_size = past_key_values[0][0].shape[self.k_seq_dim] else: # no memory assert _past_key_values[0][0] is None batch_size = self.all_input_ids.shape[0] # NOTE: we do not need to repliace beacon tokens for the last window seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1] input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token # all 0 attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len) # 2 indicates the beacon token is used for replication beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2 if _labels is not None: # -100 because no loss on beacon tokens labels = _labels.new_zeros((batch_size, seq_len)) - 100 else: labels = None start_idx = 0 position_offset = mem_size for i in range(self.config.beacon_parallel_window): beacon_size = beacon_size_list[i] # populate input_ids _input_ids = input_ids_list[i] cur_seq_len = _input_ids.shape[1] input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids # populate attention_mask and position_ids _attention_mask = attention_mask_list[i] _position_ids = position_ids_list[i] # the attention mask in the first window contains the mask for memory, which is redundant here if i == 0: _attention_mask = _attention_mask[:, :, :, mem_size:] _position_ids = _position_ids[:, mem_size:] - mem_size attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset # populate beacon_indices _beacon_indices = beacon_indices_list[i] beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices # populate labels if labels is not None: # populate labels _labels = labels_list[i] labels[:, start_idx: start_idx + cur_seq_len] = _labels # NOTE: when there is sink activations, we need to bias the position_ids for the first window if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None: position_offset += 1 # modify the attention and position for replicated beacon tokens if i != self.config.beacon_parallel_window - 1: replicate_beacon_row_start = start_idx + cur_seq_len replicate_beacon_col_start = mem_size + start_idx + cur_seq_len # NOTE: any attention mask is okay for replicated beacon tokens, but for convenience we use the causal mask attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1) # NOTE: all future tokens can attend to the replicated beacon tokens attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0 # NOTE: the position of replicated beacon tokens start from 0 position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:] start_idx += cur_seq_len + beacon_size position_offset += beacon_size # the memory is visible to all subsequent tokens attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0 # NOTE: modify beacon_indices for i, (key, value, _, _) in enumerate(past_key_values): past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices) # NOTE: update _beacon_indices so that the next-token logits can be properly sliced out in self.output() self.beacon_indices = beacon_indices return input_ids, attention_mask, position_ids, past_key_values, labels else: return self._step() def _step(self, ignore_memory=False): """ Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values. """ #============================================# # Check whether the inputs fulfills a window. #============================================# #print(self.beacon_window,end='beaconwindow\n') # the starting position of the current window w.r.t. the start of the current input sequence start_idx = self.start_idx # the end position of the current window w.r.t. the start of the current input sequence end_idx = start_idx + self.beacon_window # indicates if the current window is completely filled by raw activations and new tokens # we only append beacon tokens for full windows if end_idx > self.all_sequence_length: # the input is shorter than the initial window size end_idx = self.all_sequence_length is_full_window = False else: is_full_window = True # NOTE: in training, the entire sequence is input to the model at once # In the last window, we do not need to append beacons because they will not be used at all if self.training and end_idx == self.all_sequence_length: next_start_idx = start_idx is_full_window = False raw_size_to_cache = -1 beacon_size = 0 compression_ratio = -1 # NOTE: we do not compress the beacon_skip_first tokens at the beginning of the sequence elif self.step_idx == 0 and self.beacon_skip_first is not None: end_idx = start_idx + self.beacon_skip_first assert end_idx <= self.all_sequence_length next_start_idx = end_idx is_full_window = True raw_size_to_cache = -1 beacon_size = 0 compression_ratio = -1 # NOTE: we do not compress tokens after beacon_skip_last tokens elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last: end_idx = min(start_idx + self.beacon_window, self.all_sequence_length) next_start_idx = end_idx is_full_window = False raw_size_to_cache = -1 beacon_size = 0 compression_ratio = -1 else: #============================================# # Set compression ratio #============================================# if self.config.beacon_pos == "append": if is_full_window: # determine compression ratio for the current window beacon_stride = self.beacon_stride compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx) if compression_ratio > 0: # the stride must be evenly divisible by compression_ratio beacon_size = beacon_stride // compression_ratio else: # the raw activations are used as beacon activations beacon_size = -1 # forward start_idx and end_idx next_start_idx = start_idx + beacon_stride # how many raw activations to save raw_size_to_cache = end_idx - next_start_idx else: # no stride because the sequence has finished next_start_idx = start_idx # cache all raw activations raw_size_to_cache = -1 beacon_size = 0 compression_ratio = 0 elif self.config.beacon_pos == "interleave": # the number of raw tokens in the input_ids input_size = end_idx - self.end_idx # set compression ratio once the previous window has finished, otherwise, reuse the interleave_compression_ratio if the input belongs to an unfinished window if self.is_full_window: compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx) self.interleave_compression_ratio = compression_ratio else: compression_ratio = self.interleave_compression_ratio # the beacon size is non-zero even if the window is not full if compression_ratio > 0: # this number of beacon tokens will be inserted among the raw tokens beacon_size = (input_size + self.interleave_remainder) // compression_ratio else: # the raw activations are used as beacon activations beacon_size = -1 if is_full_window: # move forward one window next_start_idx = start_idx + self.beacon_stride # no save raw activations raw_size_to_cache = 0 else: # no stride because the sequence has not finished next_start_idx = start_idx # cache all recent raw activations to be used in the next window raw_size_to_cache = -1 #============================================# # Slice out input_ids (raw tokens in the current window) #============================================# input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device) attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device) if self.all_labels is not None: labels = self.all_labels[:, self.end_idx: end_idx].to(self._device) else: labels = None batch_size = input_ids.shape[0] #============================================# # Insert beacon tokens if necessary. #============================================# # t1 = time.time() if self.config.beacon_pos == "append": # append beacons if necessary if is_full_window and beacon_size > 0: input_ids = torch.cat([input_ids, input_ids.new_full((batch_size, beacon_size), self.beacon_token)], dim=1) # NOTE: prepend 1 to attention_mask because we have past_key_values attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1) if labels is not None: labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1) elif self.config.beacon_pos == "interleave": input_len = input_ids.shape[1] if beacon_size > 0: # insert beacon tokens in between raw tokens input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token) raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device) interleave_start_idx = compression_ratio - self.interleave_remainder raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids) input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids) input_ids = input_ids_with_beacons # attention mask attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1) attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask) attention_mask = attention_mask_with_beacons # labels if labels is not None: labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100) labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels) labels = labels_with_beacons if compression_ratio > 0: # update the reminder self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio # NOTE: skip computing loss in the very first window because the beacon tokens will be used in the next window if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'): labels[:] = -100 # t2 = time.time() #============================================# # Prepare beacon_indices for interleave beacon_pos, a boolean mask where True indicates the beacon tokens. # The mask is applied on the inputs of the entire window, including the cached activations and the input_ids. #============================================# beacon_indices = (input_ids[0] == self.beacon_token).long() if self.is_full_window: self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device) # the beacon_indices always tracks the beacon tokens in both the cached activations and the input_ids beacon_indices = torch.cat([self.beacon_indices, beacon_indices]) # record the beacon_indices for the next window self.beacon_indices = beacon_indices if is_full_window and beacon_size == -1: # NOTE: the first beacon_stride raw tokens serve as beacon tokens # we use -1 to indicate these raw tokens, so that the attention mask and position ids will not be modified beacon_indices[:self.beacon_stride] = -1 # t3 = time.time() #============================================# # Prepare past_key_values. # beacon_size: how many beacon tokens are there in the input_ids # beacon_indices: the boolean mask for the entire window where True indicates the beacon tokens (for append, the beacon_indices corresponds to input_ids, while for 'interleave', the beacon_indices corresponds to the entire window including both the input_ids and the cached activations) #============================================# past_key_values = [] for layer_idx in range(self.config.num_hidden_layers): if ignore_memory: key, value = None, None else: sink_key, sink_value = self.sink_activations[layer_idx] beacon_key, beacon_value = self.beacon_activations[layer_idx] raw_key, raw_value = self.raw_activations[layer_idx] key = cat_tensor([ sink_key, beacon_key, raw_key, ], dim=self.k_seq_dim) value = cat_tensor([ sink_value, beacon_value, raw_value, ], dim=self.v_seq_dim) layer_past_key_values = (key, value, beacon_size, beacon_indices) past_key_values.append(layer_past_key_values) # t4 = time.time() #============================================# # Prepare attention_mask and position_ids. #============================================# first_key = past_key_values[0][0] mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0 if mem_size > 0: attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1) input_length = input_ids.shape[1] position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1) if self.config._attn_implementation == "flash_attention_2": assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}." if 0 in attention_mask: pass else: attention_mask = None elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0): attention_mask = None else: attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids( attention_mask, position_ids, mem_size, beacon_size, compression_ratio, ) # t5 = time.time() # print(f"prepare inputs {t2-t1}, prepare indices {t3-t2}, prepare memory {t4-t3}, prepare attention mask {t5-t4}") #============================================# # Update necessary attributes. #============================================# # keep track of whether the current inputs is a full_window self.is_full_window = is_full_window # keep track of the raw_size_to_cache self.raw_size_to_cache = raw_size_to_cache # involked in self.output() self.all_beacon_sizes.append(beacon_size) # update start_idx and end_idx # NOTE: the update of start_idx will influence self.beacon_window and self.beacon_stride in case self.beacon_skip_last is not None # Therefore, we must make sure all calls to self.beacon_window and self.beacon_stride happen before the update of start_idx self.start_idx = next_start_idx self.end_idx = end_idx self.step_idx += 1 # print(f"start_idx: {start_idx}") # print(f"next_start_idx: {next_start_idx}") # print(f"beacon_size: {beacon_size}") # print(f"raw_size_to_cache: {raw_size_to_cache}") # print(f"interleave_remainder:{self.interleave_remainder}") # print(f"input_ids: {input_ids}") # print(f"beacon_indices: {beacon_indices}") # print(f"position_ids: {position_ids}") # print(f"attention_mask:\n{attention_mask == 0}") # x = input() # if x == "s": # return return input_ids, attention_mask, position_ids, past_key_values, labels def update_memory(self, past_key_values): """ Accumulate beacon activations and raw activations. """ for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values): # NOTE: the past_key_values are incrementally returned (only the new keys and values are returned) previous_raw_key, previous_raw_value = self.raw_activations[layer_idx] if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None: assert key.shape[self.k_seq_dim] == self.beacon_skip_first assert value.shape[self.k_seq_dim] == self.beacon_skip_first self.sink_activations[layer_idx] = [ key, value, ] # NOTE: no need to update raw activations and beacon activations as all activations are kept as sink activations continue if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0: # save the sink activations # NOTE: we do not slice the key/value activations, which may cause duplication when beacon_ratio=-1 for the first window, but it's okay self.sink_activations[layer_idx] = [ slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim), slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim), ] if not self.is_full_window: # this means the current input does not fulfill a window # thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled assert self.raw_size_to_cache == -1 raw_key = cat_tensor([ previous_raw_key, key ], dim=self.k_seq_dim) raw_value = cat_tensor([ previous_raw_value, value ], dim=self.v_seq_dim) self.raw_activations[layer_idx] = (raw_key, raw_value) else: # NOTE: use the correct previous_beacon_key and value! previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx] beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory( key, value, previous_beacon_key, previous_beacon_value, previous_raw_key, previous_raw_value, beacon_indices, ) self.beacon_activations[layer_idx] = (beacon_key, beacon_value) self.raw_activations[layer_idx] = (raw_key, raw_value) def update_loss(self, batch_loss, valid_token_num): """ Accumulate loss for later perplexity computation and backward pass. """ if self.batch_loss is None: # NOTE: multiply valid_token_num because batch_loss is divided by it in advance self.batch_loss = batch_loss * valid_token_num self.valid_token_num = valid_token_num else: # NOTE: avoid in-place operations, otherwise there will be gradient errors in training self.batch_loss = self.batch_loss + batch_loss * valid_token_num self.valid_token_num = self.valid_token_num + valid_token_num def output(self, model_outputs): """ Override loss with accumulated loss. Update the next-token logits. """ # override loss if self.batch_loss is not None: # here the batch_loss is the summation of all token losses in each element loss = self.batch_loss.sum() / self.valid_token_num.sum() # NOTE: prevent nan batch_loss = self.batch_loss / self.valid_token_num if (self.valid_token_num == 0).any(): batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.) # NOTE: we must use dict to override values, otherwise trainer cannot find loss model_outputs["loss"] = loss model_outputs["batch_loss"] = batch_loss # override last_hidden_states (used in generation) beacon_size = self.all_beacon_sizes[-1] # remove logits corresponding to beacon tokens if beacon_size > 0: logits = model_outputs["logits"] beacon_indices = self.beacon_indices[-logits.shape[1]:] model_outputs["logits"] = logits[:, beacon_indices == 0] return model_outputs def _make_4d_attention_mask_and_position_ids( self, attention_mask, position_ids, mem_size, beacon_size, compression_ratio, ): """ Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len). """ tgt_size = attention_mask.size(-1) - mem_size dtype = self.dtype min_value = self.min_value device = self._device batch_size, src_size = attention_mask.size() # square for memory, and lower triangular for input_ids causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype) mask_cond = torch.arange(causal_mask.size(-1), device=device) causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0) causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1) causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size) # 1 for non-padding tokens expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size) invert_mask = 1.0 - expand_mask ###add # invert_mask = ~ expand_mask invert_mask.masked_fill_(invert_mask.bool(), min_value) attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value) if self.config.beacon_attn == "step-expansion": # each beacon can attend to one more sub-interval than its predecessor if self.config.beacon_pos == "append" and beacon_size > 0: window_size = self.beacon_window window_size_with_beacon = window_size + beacon_size beacon_start_idx = -beacon_size # batch_size, head_num, window_size reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size] # compression_ratio, 2 * compression_ratio, ..., beacon_size * compression_ratio beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio # 0, 1, 2, ..., window_size - 1 ordinal_arange = torch.arange(window_size, device=device) # beacon_size, window_size valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1) # beacon_size, window_size ordinal_attention_mask = torch.where(valid_pos, 0, min_value) # NOTE: add reference attention_mask so that padding tokens are considered ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) if self.config.beacon_attend_prev: beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1) # the beacon token is next to the last ordinal token it attends to ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size] beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None] position_ids[:, beacon_start_idx:] = beacon_position_ids else: beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0) # the beacon token is next to the last ordinal token it attends to ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size] beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1 position_ids[:, beacon_start_idx:] = beacon_position_ids attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask # NOTE: the attention mask should be modified when there is beacon token within the window, not in the input_ids elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any(): assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!" beacon_indices = self.beacon_indices cur_position_ids = position_ids[:, -len(beacon_indices):] base_position = cur_position_ids[:, 0] - 1 # NOTE: alternate position so that the position of raw tokens are consistent position_template = cur_position_ids.new_ones(cur_position_ids.shape) position_template[:, compression_ratio + 1::compression_ratio + 1] = 0 cur_position_ids = base_position + position_template.cumsum(-1) position_ids[:, -len(beacon_indices):] = cur_position_ids cur_input_length = len(beacon_indices) cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:] # mask all beacon columns cur_attention_mask[..., beacon_indices] = min_value # beacon tokens can attend to themselves input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:] input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0 elif self.config.beacon_attn == "segmentation": # each beacon can attend to its corresponding sub-interval if self.config.beacon_pos == "append" and beacon_size > 0: window_size = self.beacon_window window_size_with_beacon = window_size + beacon_size beacon_start_idx = -beacon_size # batch_size, head_num, window_size reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size] # beacon_size, compression_ratio indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1) # beacon_size, window_size ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value) ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0) # NOTE: add reference attention_mask so that padding tokens are considered ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) if self.config.beacon_attend_prev: beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1) # the beacon token is next to the last ordinal token it attends to beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size) beacon_position_ids = beacon_position_ids + torch.arange(beacon_size) position_ids[:, beacon_start_idx:] = beacon_position_ids else: beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0) # the beacon token is next to the last ordinal token it attends to beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size) position_ids[:, beacon_start_idx:] = beacon_position_ids attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask # beacons of different ratios are blind to others attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value elif self.config.beacon_pos == "interleave": raise NotImplementedError elif self.config.beacon_attn == "full-coverage": pass return attention_mask, position_ids def _extract_beacon_and_raw_memory( self, key, value, previous_beacon_key, previous_beacon_value, previous_raw_key, previous_raw_value, beacon_indices, ): """Extract beacon and raw memory from the returned key and value when the window is full.""" key = cat_tensor([ previous_raw_key, key ], dim=self.k_seq_dim) value = cat_tensor([ previous_raw_value, value ], dim=self.v_seq_dim) # NOTE: we use magic slice instead of boolean index here for efficiency beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim) beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim) if self.config.beacon_accum: beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim) beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim) if self.raw_size_to_cache > 0: raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim) raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim) raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim) raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim) else: raw_key = None raw_value = None return beacon_key, beacon_value, raw_key, raw_value def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2): if x is None: return None if end == 0: return None if start == x.shape[dim]: return None if start is not None and start == end: return None if dim == 2: if index is not None: return x[:, :, index] elif start is None and end is not None: if step is None: return x[:, :, :end, ...] else: return x[:, :, :end:step, ...] elif start is not None and end is None: if step is None: return x[:, :, start:, ...] else: return x[:, :, start::step, ...] elif start is not None and end is not None: if step is None: return x[:, :, start:end, ...] else: return x[:, :, start:end:step, ...] elif dim == 1: if index is not None: return x[:, :, index] elif start is None and end is not None: if step is None: return x[:, :end, ...] else: return x[:, :end:step, ...] elif start is not None and end is None: if step is None: return x[:, start:, ...] else: return x[:, start::step, ...] elif start is not None and end is not None: if step is None: return x[:, start:end, ...] else: return x[:, start:end:step, ...] else: raise NotImplementedError def cat_tensor(list_of_tensors, dim=-1): list_of_tensors = [t for t in list_of_tensors if t is not None] if len(list_of_tensors) > 1: result = torch.cat(list_of_tensors, dim=dim) elif len(list_of_tensors) == 1: result = list_of_tensors[0] else: result = None return result def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2): new_activations = [] for key, value in activations: new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim) new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim) new_activations.append([new_key, new_value]) return new_activations def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2): assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}." new_activations = [] for layer_idx in range(len(list_of_activations[0])): keys = [x[layer_idx][0] for x in list_of_activations] values = [x[layer_idx][1] for x in list_of_activations] new_key = cat_tensor(keys, dim=k_seq_dim) new_value = cat_tensor(values, dim=v_seq_dim) new_activations.append([new_key, new_value]) return new_activations def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")): """ Interleave main_activations and augment_activations according to main_span and augment_span. Args: main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in. augment_span: a list of tuples (start_idx, end_idx) """ assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!" assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!" new_activations = [] for layer_idx in range(len(main_activations)): main_key, main_value = main_activations[layer_idx] augment_key, augment_value = augment_activations[layer_idx] sliced_keys = [] sliced_values = [] augment_idx = 0 for start, end in main_spans: if start is None and end is None: # this means the augment key/value should be plugged in augment_start, augment_end = augment_spans[augment_idx] sliced_key = slice_tensor( augment_key, start=augment_start, end=augment_end, dim=k_seq_dim ).to(device) sliced_value = slice_tensor( augment_value, start=augment_start, end=augment_end, dim=v_seq_dim ).to(device) else: sliced_key = slice_tensor( main_key, start=start, end=end, dim=k_seq_dim ) sliced_value = slice_tensor( main_value, start=start, end=end, dim=v_seq_dim ) sliced_keys.append(sliced_key) sliced_values.append(sliced_value) new_key = cat_tensor(sliced_keys, dim=k_seq_dim) new_value = cat_tensor(sliced_values, dim=v_seq_dim) new_activations.append([new_key, new_value]) return new_activations def softmax(x:np.ndarray, axis=-1, temperature=1): if isinstance(x, list): x = np.array(x) x = x / temperature x = x - x.max(axis=axis, keepdims=True) y = np.exp(x) return y / y.sum(axis=axis, keepdims=True) def l1_norm(x): sum_x = sum(x) x = [y/sum_x for y in x] return x # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2 class Qwen2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Qwen2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) class Qwen2RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, q, k, position_ids): seq_len = max(position_ids.max().item() + 1, k.shape[2]) # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype) # batch_size, 1, key_len, head_dim k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) q_cos = k_cos[..., -q.shape[2]:, :] q_sin = k_sin[..., -q.shape[2]:, :] q_embed = (q * q_cos) + (rotate_half(q) * q_sin) k_embed = (k * k_cos) + (rotate_half(k) * k_sin) return q_embed, k_embed class Qwen2LinearScalingRotaryEmbedding(Qwen2RotaryEmbedding): """Qwen2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) class Qwen2DynamicNTKScalingRotaryEmbedding(Qwen2RotaryEmbedding): """Qwen2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) class Qwen2YarnRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128): super().__init__() self.base = base self.dim = dim self.scaling_factor = scaling_factor self.beta_slow = beta_slow self.beta_fast = beta_fast self.max_position_embeddings = max_position_embeddings self._set_cos_sin_cache( seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype() ) def _get_factor(self, device, dtype): # the dimension whose index is smaller than fast_dim rotates more than beta_fast fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base)) fast_dim = max(math.floor(fast_dim), 0) # the dimension whose index is bigger than slow_dim rotates less than beta_slow slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base)) slow_dim = min(math.ceil(slow_dim), self.dim - 1) if fast_dim == slow_dim: slow_dim += 0.001 # NOTE: very important to use full precision here so that the factor is correct dim_arange = torch.arange(0, self.dim // 2, device=device, dtype=torch.float32) dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim) dim_factor = torch.clamp(dim_factor, 0, 1) # align with the paper notation return (1 - dim_factor) def _get_temperature(self): if self.scaling_factor <= 1: return 1.0 return 0.07 * math.log(self.scaling_factor) + 1.0 def _set_cos_sin_cache(self, seq_len, device, dtype): dim_arange = torch.arange(0, self.dim, 2, device=device) / self.dim # dim / 2 freq = self.base ** dim_arange theta = 1 / freq interleave_theta = theta / self.scaling_factor factor = self._get_factor(device, dtype) yarn_theta = factor * theta + (1 - factor) * interleave_theta self.register_buffer("inv_freq", yarn_theta, persistent=False) t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) # get attention temperature temperature = self._get_temperature() self.register_buffer("cos_cached", (emb.cos() * temperature).to(dtype), persistent=False) self.register_buffer("sin_cached", (emb.sin() * temperature).to(dtype), persistent=False) self.max_seq_len_cached = seq_len def forward(self, q, k, position_ids): seq_len = max(position_ids.max().item() + 1, k.shape[2]) # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self.scaling_factor = seq_len / self.max_position_embeddings self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype) k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1) q_cos = k_cos[..., -q.shape[2]:, :] q_sin = k_sin[..., -q.shape[2]:, :] q_embed = (q * q_cos) + (rotate_half(q) * q_sin) k_embed = (k * k_cos) + (rotate_half(k) * k_sin) return q_embed, k_embed # Copied from transformers.models.mistral.modeling_mistral.Qwen2MLP with Qwen2->Qwen2 class Qwen2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] if "mlp" in config.beacon_param: self.beacon_up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.beacon_up_proj.weight.data.zero_() self.beacon_up_proj._is_hf_initialized = True self.beacon_down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.beacon_down_proj.weight.data.zero_() self.beacon_down_proj._is_hf_initialized = True def _init_beacon_proj(self, missing_keys): """Initialize the beacon projection weight with that of the ordinal projection.""" if "mlp" in self.config.beacon_param: if is_deepspeed_zero3_enabled(): # FIXME: after deepspeed initialization, some weights becomes non-zero # For Mistral, there are rows that are full of zeros # For Mistral, there are values bigger than 1e29... import deepspeed params = [self.up_proj.weight, self.down_proj.weight, self.beacon_up_proj.weight, self.beacon_down_proj.weight] with deepspeed.zero.GatheredParameters(params, modifier_rank=0): if (self.beacon_up_proj.weight.sum(-1) == 0).any() or (self.beacon_up_proj.weight > 1e29).any(): self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data else: if any("beacon_up_proj" in missing_key for missing_key in missing_keys): # only copy the value in-place, without tieing the weight self.beacon_up_proj.weight.data[:] = self.up_proj.weight.data self.beacon_down_proj.weight.data[:] = self.down_proj.weight.data def forward(self, x, beacon_size, beacon_indices): if "mlp" in self.config.beacon_param: # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids if beacon_size > 0: cur_beacon_indices = beacon_indices[-x.shape[1]:] ordinal_hidden_states = x[:, cur_beacon_indices == 0] beacon_hidden_states = x[:, cur_beacon_indices == 1] ordinal_down_proj = self.down_proj(self.act_fn(self.gate_proj(ordinal_hidden_states)) * self.up_proj(ordinal_hidden_states)) beacon_down_proj = self.beacon_down_proj(self.act_fn(self.gate_proj(beacon_hidden_states)) * self.beacon_up_proj(beacon_hidden_states)) down_proj = beacon_down_proj.new_ones(x.shape) down_proj[:, beacon_indices == 0] = ordinal_down_proj down_proj[:, beacon_indices == 1] = beacon_down_proj else: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) else: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Qwen2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self._init_rope() # NOTE: add extra parameters for beacon tokens # skip post initialization to speed up loading if "q" in config.beacon_param: self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None) # NOTE: initialize the beacon parameters as zero self.beacon_q_proj.weight.data.zero_() self.beacon_q_proj._is_hf_initialized = True if "k" in config.beacon_param: self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None) self.beacon_k_proj.weight.data.zero_() self.beacon_k_proj._is_hf_initialized = True if "v" in config.beacon_param: self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None) self.beacon_v_proj.weight.data.zero_() self.beacon_v_proj._is_hf_initialized = True if "o" in config.beacon_param: self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None) self.beacon_o_proj.weight.data.zero_() self.beacon_o_proj._is_hf_initialized = True def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = Qwen2RotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = Qwen2LinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = Qwen2DynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "yarn": self.rotary_emb = Qwen2YarnRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "yarn-t": self.rotary_emb = Qwen2YarnDynamicTemperatureRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "yarn-t-logn": self.rotary_emb = Qwen2YarnDynamicTemperatureLogNRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def _init_beacon_proj(self, missing_keys): """Initialize the beacon projection weight with that of the ordinal projection.""" beacon_param = self.config.beacon_param if is_deepspeed_zero3_enabled(): # FIXME: after deepspeed initialization, some weights becomes non-zero # For Mistral, there are rows that are full of zeros # For Mistral, there are values bigger than 1e29... import deepspeed if "q" in beacon_param: params = [self.beacon_q_proj.weight, self.q_proj.weight] if self.q_proj.bias is not None: params.extend([self.beacon_q_proj.bias, self.q_proj.bias]) with deepspeed.zero.GatheredParameters(params, modifier_rank=0): # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any(): self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data if self.q_proj.bias is not None: self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data if "k" in beacon_param: params = [self.beacon_k_proj.weight, self.k_proj.weight] if self.k_proj.bias is not None: params.extend([self.beacon_k_proj.bias, self.k_proj.bias]) with deepspeed.zero.GatheredParameters(params, modifier_rank=0): # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any(): self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data if self.k_proj.bias is not None: self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data if "v" in beacon_param: params = [self.beacon_v_proj.weight, self.v_proj.weight] if self.v_proj.bias is not None: params.extend([self.beacon_v_proj.bias, self.v_proj.bias]) with deepspeed.zero.GatheredParameters(params, modifier_rank=0): # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any(): self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data if self.v_proj.bias is not None: self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data if "o" in beacon_param: params = [self.beacon_o_proj.weight, self.o_proj.weight] if self.o_proj.bias is not None: params.extend([self.beacon_o_proj.bias, self.o_proj.bias]) with deepspeed.zero.GatheredParameters(params, modifier_rank=0): # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any(): self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data if self.o_proj.bias is not None: self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data else: # only copy the value in-place, without tieing the weight if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys): # FIXME: some beacon weights are not initialized as zero for mistral model, why? # if (self.beacon_q_proj.weight == 0).all(): self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data if self.q_proj.bias is not None: self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys): # if (self.beacon_k_proj.weight == 0).all(): self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data if self.k_proj.bias is not None: self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys): # if (self.beacon_v_proj.weight == 0).all(): self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data if self.v_proj.bias is not None: self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys): # if (self.beacon_o_proj.weight == 0).all(): self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data if self.o_proj.bias is not None: self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices): if beacon_size > 0: # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:] ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0] beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1] if "q" in self.config.beacon_param: ordinal_query_states = self.q_proj(ordinal_hidden_states) beacon_query_states = self.beacon_q_proj(beacon_hidden_states) query_states = beacon_query_states.new_zeros((ordinal_query_states.shape[0], cur_beacon_indices.shape[0], ordinal_query_states.shape[2])) query_states[:, cur_beacon_indices == 0] = ordinal_query_states query_states[:, cur_beacon_indices == 1] = beacon_query_states # NOTE: replicate hidden states for beacon tokens in case of parallel windows if (cur_beacon_indices == 2).any(): query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, :(cur_beacon_indices == 2).sum()] else: query_states = self.q_proj(hidden_states) if "k" in self.config.beacon_param: ordinal_key_states = self.k_proj(ordinal_hidden_states) beacon_key_states = self.beacon_k_proj(beacon_hidden_states) key_states = beacon_key_states.new_zeros((ordinal_key_states.shape[0], cur_beacon_indices.shape[0], ordinal_key_states.shape[2])) key_states[:, cur_beacon_indices == 0] = ordinal_key_states key_states[:, cur_beacon_indices == 1] = beacon_key_states # NOTE: replicate hidden states for beacon tokens in case of parallel windows if (cur_beacon_indices == 2).any(): key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, :(cur_beacon_indices == 2).sum()] else: key_states = self.k_proj(hidden_states) if "v" in self.config.beacon_param: ordinal_value_states = self.v_proj(ordinal_hidden_states) beacon_value_states = self.beacon_v_proj(beacon_hidden_states) value_states = beacon_value_states.new_zeros((ordinal_value_states.shape[0], cur_beacon_indices.shape[0], ordinal_value_states.shape[2])) value_states[:, cur_beacon_indices == 0] = ordinal_value_states value_states[:, cur_beacon_indices == 1] = beacon_value_states # NOTE: replicate hidden states for beacon tokens in case of parallel windows if (cur_beacon_indices == 2).any(): value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, :(cur_beacon_indices == 2).sum()] else: value_states = self.v_proj(hidden_states) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) return query_states, key_states, value_states def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices): if beacon_size > 0: # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids cur_beacon_indices = beacon_indices[-attn_output.shape[1]:] if "o" in self.config.beacon_param: ordinal_attn_output = self.o_proj(attn_output[:, cur_beacon_indices == 0]) beacon_attn_output = self.beacon_o_proj(attn_output[:, cur_beacon_indices == 1]) attn_output = beacon_attn_output.new_zeros(attn_output.shape) attn_output[:, cur_beacon_indices == 0] = ordinal_attn_output attn_output[:, cur_beacon_indices == 1] = beacon_attn_output # NOTE: replicate hidden states for beacon tokens in case of parallel windows # if (cur_beacon_indices == 2).any(): # attn_output[:, cur_beacon_indices == 2] = beacon_attn_output[:, :(cur_beacon_indices == 2).sum()] else: attn_output = self.o_proj(attn_output) else: attn_output = self.o_proj(attn_output) return attn_output def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() kv_seq_len = hidden_states.shape[-2] past_key, past_value, beacon_size, beacon_indices = past_key_value if past_key is not None: past_seq_len = past_key.shape[2] kv_seq_len += past_seq_len else: past_seq_len = 0 query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # return keys and values before rope # NOTE: incrementally return keys and values for efficiency past_key_value = (key_states, value_states, beacon_size, beacon_indices) if past_key is not None: # reuse k, v, self_attention key_states = torch.cat([past_key, key_states], dim=2) value_states = torch.cat([past_value, value_states], dim=2) query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class Qwen2SdpaAttention(Qwen2Attention): """ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from Qwen2Attention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() kv_seq_len = hidden_states.shape[-2] past_key, past_value, beacon_size, beacon_indices = past_key_value if past_key is not None: past_seq_len = past_key.shape[2] kv_seq_len += past_seq_len else: past_seq_len = 0 query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # return keys and values before rope # NOTE: incrementally return keys and values for efficiency past_key_value = (key_states, value_states, beacon_size, beacon_indices) if past_key is not None: # reuse k, v, self_attention key_states = torch.cat([past_key, key_states], dim=2) value_states = torch.cat([past_value, value_states], dim=2) query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) return attn_output, None, past_key_value class Qwen2FlashAttention2(Qwen2Attention): """ Qwen2 flash attention module. This module inherits from `Qwen2Attention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False bsz, q_len, _ = hidden_states.size() kv_seq_len = hidden_states.shape[-2] past_key, past_value, beacon_size, beacon_indices = past_key_value if past_key is not None: past_seq_len = past_key.shape[2] kv_seq_len += past_seq_len else: past_seq_len = 0 query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # return keys and values before rope # NOTE: incrementally return keys and values for efficiency past_key_value = (key_states, value_states, beacon_size, beacon_indices) if past_key is not None: # reuse k, v, self_attention key_states = torch.cat([past_key, key_states], dim=2) value_states = torch.cat([past_value, value_states], dim=2) query_states, key_states = self.rotary_emb(query_states, key_states, position_ids) # FlashAttention will automatically handle grouped query attention # key_states = repeat_kv(key_states, self.num_key_value_groups) # value_states = repeat_kv(value_states, self.num_key_value_groups) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (Qwen2RMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in Qwen2FlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) QWEN2_ATTENTION_CLASSES = { "eager": Qwen2Attention, "sdpa": Qwen2SdpaAttention, "flash_attention_2": Qwen2FlashAttention2, } class Qwen2DecoderLayer(nn.Module): def __init__(self, config: Qwen2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size if config.use_sliding_window and config._attn_implementation != "flash_attention_2": logger.warning_once( f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " "unexpected results may be encountered." ) self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = Qwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. " "Please make sure use `attention_mask` instead.`" ) """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ # NOTE: get beacon_size in case the mlp is included in beacon_param past_key, past_value, beacon_size, beacon_indices = past_key_value residual = hidden_states hidden_states = self.input_layernorm(hidden_states) ###add # attention_mask = attention_mask.float() # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states, beacon_size, beacon_indices) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs QWEN2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Qwen2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", QWEN2_START_DOCSTRING, ) class Qwen2PreTrainedModel(PreTrainedModel): config_class = Qwen2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Qwen2DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() QWEN2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", QWEN2_START_DOCSTRING, ) class Qwen2Model(Qwen2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] Args: config: Qwen2Config """ def __init__(self, config: Qwen2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size #152064 self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) # BEACON: add beacon embedding self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx) self.beacon_embed_tokens._is_hf_initialized = True self.layers = nn.ModuleList( [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() self.image_idx=0 def _init_beacon_embed(self, missing_keys): """Initialize the beacon token embedding with that of the eos token.""" if is_deepspeed_zero3_enabled(): import deepspeed params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight] with deepspeed.zero.GatheredParameters(params, modifier_rank=0): # deepspeed will initialize the parameters to zero if (self.beacon_embed_tokens.weight == 0).all(): if self.config.beacon_embed_init == "bos": self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] elif self.config.beacon_embed_init == "eos": if isinstance(self.config.eos_token_id, list): eos_token_id = self.config.eos_token_id[0] else: eos_token_id = self.config.eos_token_id self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] else: raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") else: if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys): if self.config.beacon_embed_init == "bos": self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] elif self.config.beacon_embed_init == "eos": if isinstance(self.config.eos_token_id, list): eos_token_id = self.config.eos_token_id[0] else: eos_token_id = self.config.eos_token_id self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id] else: raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}") def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, image_features:Optional[torch.Tensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # BEACON: always use cache use_cache = True return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key, past_value, beacon_size, beacon_indices = past_key_values[0] # BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients if beacon_size > 0: # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids # special_token = self.config.vocab_size -1 # cur_beacon_indices = beacon_indices[-input_ids.shape[1]:] # ordinal_input_ids = input_ids[:, cur_beacon_indices == 0] # image indices # beacon_input_ids = input_ids[:, cur_beacon_indices > 0] # beacon indices # beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size) # # create a new embedding tensor # inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1]) # inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds # # 计算 batch_size 和 seq_len # batch_size, seq_len = input_ids.shape # adjusted_image_idx=0 # for batch_idx in range(batch_size): # for seq_idx in range(seq_len): # if input_ids[batch_idx, seq_idx] == special_token: # # print("idx",self.image_idx+adjusted_image_idx) # # print("11",image_features[self.image_idx+adjusted_image_idx].shape) # # print("11",seq_idx,self.image_idx+adjusted_image_idx) # inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx] # adjusted_image_idx+=1 # count = (input_ids == special_token).sum().item() # self.image_idx += count # if self.image_idx==image_features.shape[0]: # self.image_idx=0 cur_beacon_indices = beacon_indices[-input_ids.shape[1]:] beacon_input_ids = input_ids[:, cur_beacon_indices > 0] # print("input_ids",input_ids) special_token = self.config.vocab_size -1 inputs_embeds = torch.zeros(*input_ids.shape, image_features.shape[-1], device=input_ids.device, dtype=image_features.dtype) batch_size, seq_len = input_ids.shape adjusted_image_idx=0 for batch_idx in range(batch_size): for seq_idx in range(seq_len): if input_ids[batch_idx, seq_idx] == special_token: # print("idx",self.image_idx+adjusted_image_idx) # print("11",image_features.shape) #print(self.image_idx) #exit(0) # print("11",seq_idx,self.image_idx+adjusted_image_idx) # print("image",image_features[self.image_idx+adjusted_image_idx].shape) # 3584 inputs_embeds[batch_idx, seq_idx] = image_features[self.image_idx+adjusted_image_idx] adjusted_image_idx+=1 count = (input_ids == special_token).sum().item() self.image_idx += count if self.image_idx==image_features.shape[0]: #print('******************') self.image_idx=0 # 对 beacon_input_ids 进行嵌入 beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size) # print("beacon",beacon_input_embeds.shape, adjusted_image_idx) inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds else: inputs_embeds = self.embed_tokens(input_ids) # embed positions hidden_states = inputs_embeds # print("------------------------------------") # print("inputs_embeds",inputs_embeds.shape) # print(f"input_ids: {input_ids}") # print(f"beacon_indices: {beacon_indices}") # print(f"position_ids: {position_ids}") # # print(f"attention_mask:\n{attention_mask == 0}") # print("------------------------------------") # x = input() # if x == "s": # return # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None # BEACON: still use tuple to organize cache next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:] ordinal_hidden_states = hidden_states[:, cur_beacon_indices == 0] beacon_hidden_states = hidden_states[:, cur_beacon_indices == 1] # BEACON: slice out the past_key_value of the corresponding layer past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class LlavaQwenConfig(Qwen2Config): model_type = "llava_qwen" class LlavaQwenModel(LlavaMetaModel, Qwen2Model): config_class = LlavaQwenConfig def __init__(self, config: Qwen2Config): super(LlavaQwenModel, self).__init__(config) class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): config_class = LlavaQwenConfig def __init__(self, config): # super(Qwen2ForCausalLM, self).__init__(config) Qwen2ForCausalLM.__init__(self, config) config.model_type = "llava_qwen" config.rope_scaling = None self.model = LlavaQwenModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def get_model(self): return self.model @classmethod def from_pretrained(cls, *args, **kwargs): """Override the default from_pretrained to extend vocab size according to beacon_size.""" kwargs.update(output_loading_info=True) model, loading_info = super().from_pretrained(*args, **kwargs) # NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading config = model.config model.memory = Memory( model_config=config, k_seq_dim=2, v_seq_dim=2, ) missing_keys = loading_info["missing_keys"] # NOTE: the beacon parameters may or may not be loaded from the checkpoint # if it is loaded from the checkpoint, we should not re-initilize it model.model._init_beacon_embed(missing_keys) # initialize weights of possible q,k,v,o,mlp for layer in model.model.layers: layer.self_attn._init_beacon_proj(missing_keys) layer.mlp._init_beacon_proj(missing_keys) return model def _native_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, shift_labels: Optional[bool] = True, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, image_features: Optional[torch.Tensor] = None, ) -> Union[Tuple, BeaconModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # when we directly call _native_forward, the past_key_values would be None if past_key_values is None: # NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)] # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) #print('native: input_ids: ',input_ids.shape,'image_features ',image_features.shape) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, image_features=image_features ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None batch_loss = None valid_token_num = None # print("labels",labels) if labels is not None: loss, batch_loss, valid_token_num = compute_loss(logits, labels, shift=shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return BeaconModelOutput( loss=loss, batch_loss=batch_loss, valid_token_num=valid_token_num, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _beacon_forward(self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, beacon_skip_first: Optional[int] = None, beacon_skip_last: Optional[int] = None, image_features:Optional[torch.Tensor] = None ): # t1 = time.time() # initialize cache # self.memory.prepare( # input_ids=input_ids, # attention_mask=attention_mask, # labels=labels # ) self.memory.prepare( input_ids=input_ids, attention_mask=attention_mask, labels=labels, skip_first=beacon_skip_first, skip_last=beacon_skip_last, ) # t2 = time.time() # after the first window, one token at a time while not self.memory.finish: # t3 = time.time() input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step() # t4 = time.time() # print("step_input",input_ids) outputs = self._native_forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, # NOTE: the labels have been shifted so that all tokens in the window have the proper loss shift_labels=False, image_features=image_features ) # t5 = time.time() # update past_key_values self.memory.update_memory(outputs.past_key_values) # t6 = time.time() if labels is not None: # update loss self.memory.update_loss(outputs.batch_loss, outputs.valid_token_num) # t7 = time.time() # print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}") # input() # t8 = time.time() # output loss, past_key_values, and perplexity outputs = self.memory.output(outputs) # t9 = time.time() # print(f"output time: {t9-t8}") # input() return outputs def forward(self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, image_features: Optional[torch.FloatTensor] = None, beacon_skip_first: Optional[int] = None, beacon_skip_last: Optional[int] = None, return_dict: Optional[bool] = None, modalities: Optional[List[str]] = ["image"], dpo_forward: Optional[bool] = False, cache_position=None, ) -> Union[Tuple, CausalLMOutputWithPast]: if image_features is None: if input_ids.shape[1] != 1: #print(images.shape,end='*****') #exit(0) image_features=self.get_image_features(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)[0] # print("image_features",image_features.shape) num_tokens=image_features.shape[0] # print("#####",input_ids.shape,input_ids) # print("@@@@@@",num_tokens) if -200 in input_ids: start_value = -200 if num_tokens !=0: insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item() negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device) if labels !=None: ignore_labels = torch.full((1, num_tokens), -100, device=labels.device, dtype=labels.dtype) before_labels = labels[:, :insert_index] after_labels = labels[:, insert_index + 1:] labels = torch.cat((before_labels, ignore_labels, after_labels), dim=1) before_input_ids = input_ids[:, :insert_index] after_input_ids = input_ids[:, insert_index + 1:] input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1) attention_mask = torch.ones_like(input_ids, dtype=torch.bool) input_ids[input_ids < 0] = self.config.vocab_size-1 #print("new_input_id",input_ids.shape) # print("new_labels",labels) # count = (input_ids == 152063).sum().item() # print("num_tokens",num_tokens,count) #if beacon_skip_first is None: beacon_skip_first=14 beacon_skip_last=beacon_skip_first + num_tokens with optional_grad_ctx(with_grad=self.training): # we can disable beacon to use the original mistral if hasattr(self, "_enable_beacon") and self._enable_beacon == False: return self._native_forward(input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict) else: # print("################") return self._beacon_forward(input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict, beacon_skip_first, beacon_skip_last, image_features) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, modalities: Optional[List[str]] = ["image"], beacon_skip_first: Optional[int] = None, beacon_skip_last: Optional[int] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: image_features=self.get_image_features(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes) image_features=torch.stack(image_features).squeeze(0) kwargs["image_features"] = image_features else: inputs_embeds = self.get_model().embed_tokens(inputs) # return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) # print("generate_id",inputs,image_features.shape) num_tokens=image_features.shape[0] beacon_skip_first = (inputs == -200).nonzero(as_tuple=True)[1].item() # if beacon_skip_first is None: # beacon_skip_first = (inputs == -200).nonzero(as_tuple=True)[1].item() if beacon_skip_last==None: beacon_skip_last = beacon_skip_first + num_tokens if -200 in inputs: start_value = -200 input_ids=inputs if num_tokens !=0: insert_index = (input_ids == start_value).nonzero(as_tuple=True)[1][0].item() negative_tokens = torch.arange(start_value, start_value - num_tokens, -1, device=input_ids.device) before_input_ids = input_ids[:, :insert_index] after_input_ids = input_ids[:, insert_index + 1:] input_ids = torch.cat((before_input_ids, negative_tokens.unsqueeze(0), after_input_ids), dim=1) attention_mask = torch.ones_like(input_ids, dtype=torch.bool) input_ids[input_ids < 0] = self.config.vocab_size-1 inputs=input_ids # print("new_input_id",inputs) return super().generate(position_ids=position_ids, attention_mask=attention_mask,inputs=inputs,beacon_skip_first=beacon_skip_first, beacon_skip_last= beacon_skip_last, **kwargs) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs): if past_key_values: input_ids = input_ids[:, -1:] # print("prepare_ids",input_ids) model_inputs = {"input_ids": input_ids} model_inputs["beacon_skip_first"]=beacon_skip_first model_inputs["beacon_skip_last"]=beacon_skip_last if 'image_features' in kwargs: model_inputs["image_features"] = kwargs['image_features'] return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past AutoConfig.register("llava_qwen", LlavaQwenConfig) AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenForCausalLM)