File size: 2,531 Bytes
c57fbe5
79f437d
 
 
 
c57fbe5
 
79f437d
c57fbe5
b55e624
c57fbe5
 
 
79f437d
 
 
c57fbe5
 
 
79f437d
c57fbe5
79f437d
 
 
 
 
c57fbe5
 
79f437d
 
 
 
 
c57fbe5
79f437d
 
c57fbe5
79f437d
c57fbe5
79f437d
c57fbe5
79f437d
 
 
 
 
 
 
 
 
 
c57fbe5
79f437d
 
c57fbe5
79f437d
 
 
 
 
 
c57fbe5
79f437d
 
 
 
c57fbe5
 
 
79f437d
c57fbe5
79f437d
 
 
 
 
b55e624
79f437d
 
 
 
 
c57fbe5
 
79f437d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- Inioluwa/nigerianLanguageTranslator
---

# MISHANM/Nigerian_eng_text_generation_Llama3_8B_instruct

This model has been carefully fine-tuned to work with the Nigerian language. It can answer questions and translate text between English and Nigerian. Using advanced natural language processing techniques, it provides accurate and context-aware responses. This means it understands the details and subtleties of Nigerian, making its answers reliable and relevant in different situations.


## Model Details
1. Language: Nigerian
2. Tasks: Question Answering(Nigerian to Nigerian) , Translation (Nigerian to English)
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct



# Training Details

The model is trained on approx 288,946 instruction samples.
1. GPUs: 4*AMD Radeon™ PRO V620 
2. Training Time: 88:16:27
  
   


 ## Inference with HuggingFace
 ```python3
 
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Nigerian_eng_text_generation_Llama3_8B_instruct"

model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
    # Format the prompt according to the chat template
    messages = [
        {
            "role": "system",
            "content": "You are a Nigerian language expert and linguist, with same knowledge give response in Nigerian language.",
        },
        {"role": "user", "content": prompt}
    ]

    # Apply the chat template
    formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

    # Tokenize and generate output
    inputs = tokenizer(formatted_prompt, return_tensors="pt")
    output = model.generate(  
        **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """Za nazhie jin sallah kendoe baa nan kamina ga baa nan"""
translated_text = generate_text(prompt)
print(translated_text)



```

## Citation Information
```
@misc{MISHANM/Nigerian_eng_text_generation_Llama3_8B_instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Nigerian Language},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
```


- PEFT 0.12.0