File size: 2,531 Bytes
c57fbe5 79f437d c57fbe5 79f437d c57fbe5 b55e624 c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d c57fbe5 79f437d b55e624 79f437d c57fbe5 79f437d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- Inioluwa/nigerianLanguageTranslator
---
# MISHANM/Nigerian_eng_text_generation_Llama3_8B_instruct
This model has been carefully fine-tuned to work with the Nigerian language. It can answer questions and translate text between English and Nigerian. Using advanced natural language processing techniques, it provides accurate and context-aware responses. This means it understands the details and subtleties of Nigerian, making its answers reliable and relevant in different situations.
## Model Details
1. Language: Nigerian
2. Tasks: Question Answering(Nigerian to Nigerian) , Translation (Nigerian to English)
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct
# Training Details
The model is trained on approx 288,946 instruction samples.
1. GPUs: 4*AMD Radeon™ PRO V620
2. Training Time: 88:16:27
## Inference with HuggingFace
```python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Nigerian_eng_text_generation_Llama3_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Nigerian language expert and linguist, with same knowledge give response in Nigerian language.",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt")
output = model.generate(
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """Za nazhie jin sallah kendoe baa nan kamina ga baa nan"""
translated_text = generate_text(prompt)
print(translated_text)
```
## Citation Information
```
@misc{MISHANM/Nigerian_eng_text_generation_Llama3_8B_instruct,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Nigerian Language},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
```
- PEFT 0.12.0 |