--- base_model: google/gemma-3-27b-it --- # MISHANM/google-gemma-3-27b-it-fp8 This model is an advanced fp8 quantized version of google/gemma-3-27b-it, meticulously crafted by experts for optimal deployment across compatible hardware ecosystems. By adopting the fp8 quantization technique, the model achieves remarkable computational efficiency, enabling significantly faster processing times and lowering resource consumption without compromising the exemplary performance standards of the original model. This quantized transformation is particularly advantageous for environments demanding high throughput and swift response times, ensuring that the model remains robust and reliable in handling complex tasks. Consequently, it exemplifies a state-of-the-art balance between performance enhancement and resource management, tailored for next-generation applications in diverse computational settings. ## Model Details 1. Tasks: Causal Language Modeling, Text Generation 2. Base Model: google/gemma-3-27b-it 3. Quantization Format: fp8 # Device Used 1. GPUs: 1*AMD Instinctâ„¢ MI210 Accelerators ## Transformers library ```sh pip install git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3 ``` # Inference with Transformers ```python3 from transformers import AutoProcessor, Gemma3ForConditionalGeneration, BitsAndBytesConfig from PIL import Image import torch model_id = "MISHANM/google-gemma-3-27b-it-fp8" # Load the model with 8-bit quantization model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto" ).eval() processor = AutoProcessor.from_pretrained(model_id) # Define chat messages for inference messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, {"type": "text", "text": "Describe this image in detail."} ] } ] # Prepare inputs for the model inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(model.device, dtype=torch.bfloat16) input_len = inputs["input_ids"].shape[-1] # Generate model output with torch.inference_mode(): generation = model.generate(**inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] # Decode the generated output decoded = processor.decode(generation, skip_special_tokens=True) print(decoded) ``` ## Citation Information ``` @misc{MISHANM/google-gemma-3-27b-it-fp8, author = {Mishan Maurya}, title = {Introducing fp8 quantized version of google/gemma-3-27b-it}, year = {2025}, publisher = {Hugging Face}, journal = {Hugging Face repository}, } ```