Improve model card: Update pipeline tag, add dataset, and HF paper link (#3)
Browse files- Improve model card: Update pipeline tag, add dataset, and HF paper link (ffb8dcbd44ce70e1773b7ccb95f1000f83346880)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,13 +1,17 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
language:
|
| 4 |
- en
|
|
|
|
|
|
|
| 5 |
metrics:
|
| 6 |
- accuracy
|
| 7 |
-
|
| 8 |
-
- llava-hf/llava-1.5-7b-hf
|
| 9 |
-
- OpenGVLab/InternVL-Chat-ViT-6B-Vicuna-7B
|
| 10 |
-
base_model_relation: adapter
|
| 11 |
tags:
|
| 12 |
- finance
|
| 13 |
- medical
|
|
@@ -25,10 +29,7 @@ tags:
|
|
| 25 |
- multimodal
|
| 26 |
- image-to-text
|
| 27 |
- text-generation
|
| 28 |
-
|
| 29 |
-
library_name: transformers
|
| 30 |
-
datasets:
|
| 31 |
-
- MLLM-CL/MLLM-CL
|
| 32 |
---
|
| 33 |
|
| 34 |
## MLLM-CL Benchmark Description
|
|
@@ -36,7 +37,7 @@ MLLM-CL is a novel benchmark encompassing domain and ability continual learning,
|
|
| 36 |
whereas the latter evaluates on non-IID scenarios with emerging model ability.
|
| 37 |
For more details, please refer to:
|
| 38 |
|
| 39 |
-
**MLLM-CL: Continual Learning for Multimodal Large Language Models** [[paper](https://arxiv.org/abs/2506.05453)], [[code](https://github.com/bjzhb666/MLLM-CL/)].
|
| 40 |

|
| 41 |
[Hongbo Zhao](https://scholar.google.com/citations?user=Gs22F0UAAAAJ&hl=zh-CN), [Fei Zhu](https://impression2805.github.io/), [Haiyang Guo](https://ghy0501.github.io/guohaiyang0501.github.io/), [Meng Wang](https://moenupa.github.io/), Rundong Wang, [Gaofeng Meng](https://scholar.google.com/citations?hl=zh-CN&user=5hti_r0AAAAJ), [Zhaoxiang Zhang](https://scholar.google.com/citations?hl=zh-CN&user=qxWfV6cAAAAJ)
|
| 42 |
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model:
|
| 3 |
+
- llava-hf/llava-1.5-7b-hf
|
| 4 |
+
- OpenGVLab/InternVL-Chat-ViT-6B-Vicuna-7B
|
| 5 |
+
datasets:
|
| 6 |
+
- MLLM-CL/MLLM-CL
|
| 7 |
+
- MLLM-CL/MLLM-CL-ReplayData
|
| 8 |
language:
|
| 9 |
- en
|
| 10 |
+
library_name: transformers
|
| 11 |
+
license: apache-2.0
|
| 12 |
metrics:
|
| 13 |
- accuracy
|
| 14 |
+
pipeline_tag: image-text-to-text
|
|
|
|
|
|
|
|
|
|
| 15 |
tags:
|
| 16 |
- finance
|
| 17 |
- medical
|
|
|
|
| 29 |
- multimodal
|
| 30 |
- image-to-text
|
| 31 |
- text-generation
|
| 32 |
+
base_model_relation: adapter
|
|
|
|
|
|
|
|
|
|
| 33 |
---
|
| 34 |
|
| 35 |
## MLLM-CL Benchmark Description
|
|
|
|
| 37 |
whereas the latter evaluates on non-IID scenarios with emerging model ability.
|
| 38 |
For more details, please refer to:
|
| 39 |
|
| 40 |
+
**MLLM-CL: Continual Learning for Multimodal Large Language Models** [[paper](https://arxiv.org/abs/2506.05453)], [[HF paper](https://huggingface.co/papers/2506.05453)], [[code](https://github.com/bjzhb666/MLLM-CL/)].
|
| 41 |

|
| 42 |
[Hongbo Zhao](https://scholar.google.com/citations?user=Gs22F0UAAAAJ&hl=zh-CN), [Fei Zhu](https://impression2805.github.io/), [Haiyang Guo](https://ghy0501.github.io/guohaiyang0501.github.io/), [Meng Wang](https://moenupa.github.io/), Rundong Wang, [Gaofeng Meng](https://scholar.google.com/citations?hl=zh-CN&user=5hti_r0AAAAJ), [Zhaoxiang Zhang](https://scholar.google.com/citations?hl=zh-CN&user=qxWfV6cAAAAJ)
|
| 43 |
|