hgissbkh commited on
Commit
4669334
·
verified ·
1 Parent(s): 06c8e53

Upload README

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: feature-extraction
3
+ library_name: transformers
4
+ license: apache-2.0
5
+ ---
6
+
7
+ # Overview
8
+
9
+ This repository contains an encoder model, part of the research presented in the paper *Should We Still Pretrain Encoders with Masked Language Modeling?* (Gisserot-Boukhlef et al.).
10
+
11
+ * **Paper:** [Should We Still Pretrain Encoders with Masked Language Modeling?](https://huggingface.co/papers/2507.00994)
12
+ * **Blog post:** [Link](https://huggingface.co/blog/Nicolas-BZRD/encoders-should-not-be-only-pre-trained-with-mlm)
13
+ * **Project page:** [https://hf.co/MLMvsCLM](https://hf.co/MLMvsCLM)
14
+
15
+ ## Model Naming
16
+
17
+ Model identifiers follow a consistent format that encodes key training details:
18
+
19
+ * **Single-stage models**:
20
+ `[model size]-[objective]-[number of steps]`.
21
+ Example: `610m-clm-42k` denotes a 610M-parameter model trained with CLM for 42,000 steps.
22
+ * **Two-stage models**:
23
+ `[model size]-[objective #1]-[steps #1]-[objective #2]-[total steps]`.
24
+ Example: `610m-clm-10k-mlm40-42k` indicates a 610M model trained first with CLM for 10k steps, then continued with MLM (40% masking ratio) for 32k more steps, totaling 42k steps.
25
+ * **Continued pretraining from decayed checkpoints**:
26
+ These use the dec prefix on the first training stage.
27
+ Example: `610m-clm-dec42k-mlm40-64k refers` to a 610M model pretrained with CLM for 42k steps (with weight decay), then further trained with MLM (40% masking) for 22k additional steps, totaling 64k.
28
+ * **Intermediate checkpoints**:
29
+ To refer to a specific training step before the final checkpoint, append the step number at the end.
30
+ Example: `610m-mlm40-42k-1000` corresponds to step 1,000 during the MLM training phase of a 610M model trained for 42k steps.
31
+
32
+ ## Usage
33
+
34
+ You can use this model for feature extraction with the Hugging Face `transformers` library.
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModel
38
+ import torch
39
+
40
+ # Replace with the actual model ID if different, e.g., "AhmedAliHassan/MLMvsCLM-Biphasic-210M"
41
+ # This placeholder assumes the current repository is the model you want to load.
42
+ model_name = "<YOUR_MODEL_ID_HERE>"
43
+
44
+ # Load the tokenizer and model, ensuring trust_remote_code for custom architectures
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
46
+ model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
47
+
48
+ text = "This is an example sentence to extract features from."
49
+
50
+ inputs = tokenizer(text, return_tensors="pt")
51
+
52
+ with torch.no_grad():
53
+ outputs = model(**inputs)
54
+
55
+ # The last hidden state contains the token embeddings (features)
56
+ last_hidden_state = outputs.last_hidden_state
57
+ print(f"Shape of last hidden state: {last_hidden_state.shape}")
58
+
59
+ # For sentence-level embeddings, common approaches include:
60
+ # 1. Averaging the token embeddings (excluding special tokens)
61
+ # 2. Using the embedding of the [CLS] token (if applicable for the model's architecture)
62
+ # Example: Mean pooling (simple average over non-padding tokens)
63
+ attention_mask = inputs["attention_mask"]
64
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
65
+ sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
66
+ sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
67
+ mean_pooled_embedding = sum_embeddings / sum_mask
68
+ print(f"Shape of mean pooled embedding: {mean_pooled_embedding.shape}")
69
+ ```
70
+
71
+ ## Citation
72
+
73
+ If you found this model useful, please consider citing our paper:
74
+
75
+ ```bibtex
76
+ @misc{gisserotboukhlef2025pretrainencodersmaskedlanguage,
77
+ title={Should We Still Pretrain Encoders with Masked Language Modeling?},
78
+ author={Hippolyte Gisserot-Boukhlef and Nicolas Boizard and Manuel Faysse and Duarte M. Alves and Emmanuel Malherbe and André F. T. Martins and Céline Hudelot and Pierre Colombo},
79
+ year={2025},
80
+ eprint={2507.00994},
81
+ archivePrefix={arXiv},
82
+ primaryClass={cs.CL},
83
+ url={https://arxiv.org/abs/2507.00994},
84
+ }
85
+ ```