Commit
·
a15d355
1
Parent(s):
5d10b26
add: UniViTAR models
Browse files- .gitattributes +1 -0
- README.md +85 -3
- config.json +19 -0
- modeling_univitar.py +604 -0
- pytorch_model.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,85 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- mlfoundations/datacomp_1b
|
5 |
+
- kakaobrain/coyo-700m
|
6 |
+
- laion/laion400m
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- zh
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
- recall
|
13 |
+
pipeline_tag: feature-extraction
|
14 |
+
library_name: transformers
|
15 |
+
---
|
16 |
+
|
17 |
+
<h1 align="center">Unified Vision Transformer with Native Resolution</h1>
|
18 |
+
|
19 |
+
|
20 |
+
## 🌠 Introduction
|
21 |
+
|
22 |
+
We present **UniViTAR**, a family of homogeneous vision foundation models tailored **for unified visual modality and native resolution scenario** in the era of multimodal. We train our UniViTAR family across multiple model scales from **0.3B to 1.4B** exclusively on public accessible image-caption data (14.6B), and observe a trend of performance increasing with parameter scaling. UniViTAR is a Transformer-based encoder model that inherits the original architecture of the conventional Vision Transformer but incorporates the following advanced modifications: *Unified Patchify for Native Image and Video Modality, 2D RoPE, SwiGLU, RMSNorm, and QK-Norm*.
|
23 |
+
|
24 |
+
|
25 |
+
## 🛠️ Environment
|
26 |
+
```bash
|
27 |
+
conda create -n univitar python=3.11 -y
|
28 |
+
conda activate univitar
|
29 |
+
pip3 install einops==0.8.0 ninja==1.11.1.1 numpy==1.26.4 pillow==10.4.0 psutil==6.0.0 torch==2.2.2 torchvision==0.17.2 transformers==4.49.0 timm==1.0.14
|
30 |
+
pip3 install flash-attn==2.6.3
|
31 |
+
```
|
32 |
+
|
33 |
+
|
34 |
+
## 🗝️ Model Usage
|
35 |
+
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
import numpy as np
|
39 |
+
from PIL import Image
|
40 |
+
from modeling_univitar import UniViTARVisionModel
|
41 |
+
|
42 |
+
# Prepare Model
|
43 |
+
model = UniViTARVisionModel("config.json")
|
44 |
+
_ = model.load_state_dict(torch.load(f"pytorch_model.bin", map_location="cpu"))
|
45 |
+
model = model.to(torch.bfloat16).cuda()
|
46 |
+
|
47 |
+
# Prepare Data: [(3, H1, W1), ..., (3, Hn, Wn)] --> (N1+...+Nn, P)
|
48 |
+
images = [Image.open(f"xx1.jpg"), Image.open(f"xx2.jpg")]
|
49 |
+
data_inputs, grid_shapes = [], []
|
50 |
+
for image in images:
|
51 |
+
data_item = model.image_transform(image)
|
52 |
+
input_data, grid_shape = model.data_patchify(data_item)
|
53 |
+
data_inputs.append(input_data.to(torch.bfloat16).cuda())
|
54 |
+
grid_shapes.append(grid_shape)
|
55 |
+
data_inputs = torch.concatenate(data_inputs, dim=0)
|
56 |
+
|
57 |
+
# Forward: (N1+...+Nn, P) --> [(N1, D), ..., (Nn, D)]
|
58 |
+
data_embeds = model(pixel_values=data_inputs, grid_shapes=grid_shapes)
|
59 |
+
data_embeds = data_embeds.split([np.prod(grid_shape) for grid_shape in grid_shapes])
|
60 |
+
print(data_embeds[0].shape, data_embeds[1].shape)
|
61 |
+
```
|
62 |
+
|
63 |
+
## 📈 Evaluation
|
64 |
+
|
65 |
+
| Model | Size | \#Seen | IN1K<sup>ZS<sup> | IN1K<sup>LP<sup> | Flickr<sup>T2I<sup> | Flickr<sup>I2T<sup> | K400<sup>ZS<sup> | ADE20K |
|
66 |
+
|--------|-----|----|------|------|------|------|------|------|
|
67 |
+
| [UniViTAR-0.3B](https://huggingface.co/MM-MVR/UniViTAR-0.3B) | 310M | 14.6B | 81.5 | 87.7 | 84.0 | 95.1 | 66.0 | 54.6 |
|
68 |
+
| [UniViTAR-0.6B](https://huggingface.co/MM-MVR/UniViTAR-0.6B) | 637M | 14.6B | 82.3 | 88.3 | 84.1 | 95.5 | 68.6 | 55.1 |
|
69 |
+
| [UniViTAR-1B](https://huggingface.co/MM-MVR/UniViTAR-1B) | 1419M | 14.6B | 82.9 | 89.2 | 83.5 | 95.1 | 69.0 | 56.2 |
|
70 |
+
|
71 |
+
<font size=1>*ZS: Zero-shot Classification, LP: Linear-Probe Classification, T2I/I2T: Text-to-Image/Image-to-Text Retrieval*</font>
|
72 |
+
|
73 |
+
|
74 |
+
## ✏️ Reference
|
75 |
+
|
76 |
+
If you find UniViTAR useful in your research or applications, please consider citing the following BibTeX:
|
77 |
+
|
78 |
+
```
|
79 |
+
@article{qiao2025univitar,
|
80 |
+
title={UniViTAR: Unified Vision Transformer with Native Resolution},
|
81 |
+
author={Qiao, Limeng and Gan, Yiyang and Wang, Bairui and Qin, Jie and Xu, Shuang and Yang, Siqi and Ma, Lin},
|
82 |
+
journal={arXiv preprint arXiv:2504.01792},
|
83 |
+
year={2025}
|
84 |
+
}
|
85 |
+
```
|
config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resolution_mode": "native",
|
3 |
+
"min_tokens": 256,
|
4 |
+
"max_tokens": 16384,
|
5 |
+
"patch_size": 14,
|
6 |
+
"resize_factor": 2,
|
7 |
+
"spatial_merge_size": 1,
|
8 |
+
"temporal_patch_size": 2,
|
9 |
+
"num_hidden_layers": 24,
|
10 |
+
"num_attention_heads": 16,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"intermediate_size": 4224,
|
13 |
+
"pe_type": "rope2d",
|
14 |
+
"norm_type": "RMSNorm",
|
15 |
+
"hidden_act": "SwiGLU",
|
16 |
+
"init_method": "xavier",
|
17 |
+
"image_mean": [0.485, 0.456, 0.406],
|
18 |
+
"image_std": [0.229, 0.224, 0.225]
|
19 |
+
}
|
modeling_univitar.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterable, Optional, Tuple, Union, List
|
2 |
+
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
from einops import rearrange
|
14 |
+
from functools import partial
|
15 |
+
from timm.layers import DropPath
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from torchvision import transforms
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers.activations import ACT2FN
|
20 |
+
from transformers.modeling_utils import PreTrainedModel
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
|
23 |
+
from flash_attn.bert_padding import pad_input
|
24 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
def rotate_half(x):
|
30 |
+
"""Rotates half the hidden dims of the input."""
|
31 |
+
x1 = x[..., : x.shape[-1] // 2]
|
32 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
33 |
+
return torch.cat((-x2, x1), dim=-1)
|
34 |
+
|
35 |
+
|
36 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
37 |
+
orig_dtype = tensor.dtype
|
38 |
+
tensor = tensor.float()
|
39 |
+
cos = freqs.cos()
|
40 |
+
sin = freqs.sin()
|
41 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
42 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
43 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
44 |
+
output = output.to(orig_dtype)
|
45 |
+
return output
|
46 |
+
|
47 |
+
|
48 |
+
class VisionRotaryEmbedding2D(nn.Module):
|
49 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
50 |
+
super().__init__()
|
51 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
52 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
53 |
+
|
54 |
+
def forward_(self, seqlen: int) -> torch.Tensor:
|
55 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
56 |
+
freqs = torch.outer(seq, self.inv_freq)
|
57 |
+
return freqs
|
58 |
+
|
59 |
+
def forward(self, grid_shapes, spatial_merge_size=2):
|
60 |
+
pos_ids = []
|
61 |
+
s = spatial_merge_size
|
62 |
+
for t, h, w in grid_shapes:
|
63 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
64 |
+
hpos_ids = hpos_ids.reshape(h // s, s, w // s, s)
|
65 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
66 |
+
hpos_ids = hpos_ids.flatten()
|
67 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
68 |
+
wpos_ids = wpos_ids.reshape(h // s, s, w // s, s)
|
69 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
70 |
+
wpos_ids = wpos_ids.flatten()
|
71 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
72 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
73 |
+
max_grid_size = torch.tensor(grid_shapes).max()
|
74 |
+
rotary_pos_emb_full = self.forward_(max_grid_size)
|
75 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
76 |
+
return rotary_pos_emb
|
77 |
+
|
78 |
+
|
79 |
+
class FlashAttention(nn.Module):
|
80 |
+
# https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
|
81 |
+
"""Implement the scaled dot product attention with softmax.
|
82 |
+
Arguments
|
83 |
+
---------
|
84 |
+
softmax_scale: The temperature to use for the softmax attention.
|
85 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
86 |
+
runtime)
|
87 |
+
attention_dropout: The dropout rate to apply to the attention
|
88 |
+
(default: 0.0)
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
92 |
+
super().__init__()
|
93 |
+
self.softmax_scale = softmax_scale
|
94 |
+
self.dropout_p = attention_dropout
|
95 |
+
self._deterministic = True
|
96 |
+
|
97 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
98 |
+
max_s=None, need_weights=False):
|
99 |
+
"""Implements the multihead softmax attention.
|
100 |
+
Arguments
|
101 |
+
---------
|
102 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
103 |
+
if unpadded: (nnz, 3, h, d)
|
104 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
105 |
+
"""
|
106 |
+
assert not need_weights
|
107 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
108 |
+
assert qkv.is_cuda
|
109 |
+
|
110 |
+
if cu_seqlens is None:
|
111 |
+
batch_size = qkv.shape[0]
|
112 |
+
seqlen = qkv.shape[1]
|
113 |
+
if key_padding_mask is None:
|
114 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
115 |
+
max_s = seqlen
|
116 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
117 |
+
device=qkv.device)
|
118 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
119 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
120 |
+
softmax_scale=self.softmax_scale, causal=causal
|
121 |
+
)
|
122 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
123 |
+
else:
|
124 |
+
qkv = qkv.squeeze() # [1, n, h, d] -> [n, h, d]
|
125 |
+
seqlens_in_batch = key_padding_mask.sum(dim=-1, dtype=torch.int32)
|
126 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
127 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
128 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
129 |
+
qkv, cu_seqlens, max_seqlen_in_batch, self.dropout_p if self.training else 0.0,
|
130 |
+
softmax_scale=self.softmax_scale, causal=causal, deterministic=self._deterministic
|
131 |
+
)
|
132 |
+
output = output.unsqueeze(0)
|
133 |
+
else:
|
134 |
+
assert max_s is not None
|
135 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
136 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
137 |
+
softmax_scale=self.softmax_scale, causal=causal
|
138 |
+
)
|
139 |
+
|
140 |
+
return output, None
|
141 |
+
|
142 |
+
|
143 |
+
class RMSNorm(nn.Module):
|
144 |
+
def __init__(self, hidden_size, eps=1e-6):
|
145 |
+
super().__init__()
|
146 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
147 |
+
self.variance_epsilon = eps
|
148 |
+
|
149 |
+
def forward(self, hidden_states):
|
150 |
+
input_dtype = hidden_states.dtype
|
151 |
+
hidden_states = hidden_states.to(torch.float32)
|
152 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
153 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
154 |
+
return self.weight * hidden_states.to(input_dtype)
|
155 |
+
|
156 |
+
|
157 |
+
try:
|
158 |
+
from apex.normalization import FusedRMSNorm
|
159 |
+
RMSNorm = FusedRMSNorm # noqa
|
160 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm')
|
161 |
+
except ImportError: # using the normal RMSNorm
|
162 |
+
pass
|
163 |
+
except Exception:
|
164 |
+
logger.warning('discovered apex but it failed to load, falling back to RMSNorm')
|
165 |
+
pass
|
166 |
+
|
167 |
+
|
168 |
+
@dataclass
|
169 |
+
class BaseModelOutputWithKwargs(ModelOutput):
|
170 |
+
last_hidden_state: torch.FloatTensor = None
|
171 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
172 |
+
kwargs: Optional[dict] = None
|
173 |
+
|
174 |
+
|
175 |
+
class UniViTARVisionConfig(PretrainedConfig):
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
resolution_mode="native",
|
179 |
+
init_method="xavier",
|
180 |
+
num_channels=3,
|
181 |
+
patch_size=14,
|
182 |
+
temporal_patch_size=2,
|
183 |
+
image_size=1792,
|
184 |
+
patch_dropout=0.0,
|
185 |
+
attention_dropout=0.0,
|
186 |
+
dropout=0.0,
|
187 |
+
drop_path_rate=0.0,
|
188 |
+
initializer_range=1e-10,
|
189 |
+
num_hidden_layers=24,
|
190 |
+
num_attention_heads=16,
|
191 |
+
hidden_size=1024,
|
192 |
+
intermediate_size=4224,
|
193 |
+
patch_embedding_bias=True,
|
194 |
+
qk_normalization=True,
|
195 |
+
qkv_bias=False,
|
196 |
+
initializer_factor=0.1,
|
197 |
+
use_pre_norm=False,
|
198 |
+
pe_type="rope2d",
|
199 |
+
rope_theta=10000,
|
200 |
+
spatial_merge_size=1,
|
201 |
+
norm_type="RMSNorm",
|
202 |
+
hidden_act='SwiGLU',
|
203 |
+
use_flash_attn=True,
|
204 |
+
layer_norm_eps=1e-6,
|
205 |
+
min_tokens=576,
|
206 |
+
max_tokens=16384,
|
207 |
+
image_mean=(0.485, 0.456, 0.406),
|
208 |
+
image_std=(0.229, 0.224, 0.225),
|
209 |
+
relarge_ratio=1.0,
|
210 |
+
**kwargs,
|
211 |
+
):
|
212 |
+
super().__init__(**kwargs)
|
213 |
+
|
214 |
+
self.resolution_mode = resolution_mode
|
215 |
+
self.init_method = init_method
|
216 |
+
self.pe_type = pe_type
|
217 |
+
self.rope_theta = rope_theta
|
218 |
+
self.temporal_patch_size = temporal_patch_size
|
219 |
+
self.num_channels = num_channels
|
220 |
+
self.patch_size = patch_size
|
221 |
+
self.image_size = image_size
|
222 |
+
self.patch_dropout = patch_dropout
|
223 |
+
self.attention_dropout = attention_dropout
|
224 |
+
self.dropout = dropout
|
225 |
+
self.drop_path_rate = drop_path_rate
|
226 |
+
self.initializer_range = initializer_range
|
227 |
+
self.num_hidden_layers = num_hidden_layers
|
228 |
+
self.num_attention_heads = num_attention_heads
|
229 |
+
self.hidden_size = hidden_size
|
230 |
+
self.intermediate_size = intermediate_size
|
231 |
+
self.patch_embedding_bias = patch_embedding_bias
|
232 |
+
self.qk_normalization = qk_normalization
|
233 |
+
self.qkv_bias = qkv_bias
|
234 |
+
self.initializer_factor = initializer_factor
|
235 |
+
self.use_pre_norm = use_pre_norm
|
236 |
+
self.norm_type = norm_type
|
237 |
+
self.hidden_act = hidden_act
|
238 |
+
self.use_flash_attn = use_flash_attn
|
239 |
+
self.layer_norm_eps = layer_norm_eps
|
240 |
+
self.spatial_merge_size = spatial_merge_size
|
241 |
+
self.min_tokens = min_tokens
|
242 |
+
self.max_tokens = max_tokens
|
243 |
+
self.image_mean = image_mean
|
244 |
+
self.image_std = image_std
|
245 |
+
self.relarge_ratio = relarge_ratio
|
246 |
+
|
247 |
+
@classmethod
|
248 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
249 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
250 |
+
|
251 |
+
if 'vision_config' in config_dict:
|
252 |
+
config_dict = config_dict['vision_config']
|
253 |
+
|
254 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
255 |
+
logger.warning(
|
256 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
257 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
258 |
+
)
|
259 |
+
|
260 |
+
return cls.from_dict(config_dict, **kwargs)
|
261 |
+
|
262 |
+
|
263 |
+
class UniViTARImageTransform(object):
|
264 |
+
def __init__(self, config):
|
265 |
+
self.config = config
|
266 |
+
self.resolution_mode = config.resolution_mode
|
267 |
+
|
268 |
+
self.image_mean, self.image_std = config.image_mean, config.image_std
|
269 |
+
self.patch_size = config.patch_size
|
270 |
+
self.temporal_patch_size = config.temporal_patch_size
|
271 |
+
self.spatial_merge_size = config.spatial_merge_size
|
272 |
+
self.resize_factor = config.patch_size * config.spatial_merge_size * config.resize_factor
|
273 |
+
self.relarge_ratio = config.relarge_ratio
|
274 |
+
|
275 |
+
self.forced_transform = None
|
276 |
+
self.min_pixels, self.max_pixels = None, None
|
277 |
+
assert self.resolution_mode in ["native", "224", "378", "756"]
|
278 |
+
if self.resolution_mode == "native":
|
279 |
+
self.min_pixels = config.min_tokens * config.patch_size * config.patch_size
|
280 |
+
self.max_pixels = config.max_tokens * config.patch_size * config.patch_size
|
281 |
+
else:
|
282 |
+
image_size = int(self.resolution_mode)
|
283 |
+
self.forced_transform = transforms.Compose([
|
284 |
+
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC),
|
285 |
+
self.convert_to_rgb,
|
286 |
+
transforms.ToTensor(),
|
287 |
+
transforms.Normalize(mean=self.image_mean, std=self.image_std)
|
288 |
+
]
|
289 |
+
)
|
290 |
+
|
291 |
+
def __call__(self, images):
|
292 |
+
|
293 |
+
if not isinstance(images, List):
|
294 |
+
images = [images] # shape of each image is [h, w, c]
|
295 |
+
assert len(images) == 1 or len(images) % self.temporal_patch_size == 0
|
296 |
+
|
297 |
+
if self.resolution_mode == "native":
|
298 |
+
sample_num = 1 if len(images) == 1 else len(images) // self.temporal_patch_size
|
299 |
+
min_pixels, max_pixels = self.min_pixels // sample_num, self.max_pixels // sample_num
|
300 |
+
width, height = images[0].size # (w, h)
|
301 |
+
if self.relarge_ratio > 0 and self.relarge_ratio != 1:
|
302 |
+
height, width = int(height * self.relarge_ratio), int(width * self.relarge_ratio)
|
303 |
+
resized_height, resized_width = self.smart_resize(height, width, self.resize_factor, min_pixels, max_pixels)
|
304 |
+
processed_images = []
|
305 |
+
for image in images:
|
306 |
+
image = self.convert_to_rgb(image)
|
307 |
+
image = self.resize(image, size=(resized_height, resized_width), resample=Image.Resampling.BICUBIC)
|
308 |
+
image = self.rescale(image, scale=1/255)
|
309 |
+
image = self.normalize(image=image, mean=self.image_mean, std=self.image_std)
|
310 |
+
processed_images.append(image)
|
311 |
+
processed_images = np.array(processed_images) # (num, h, w, c)
|
312 |
+
processed_images = processed_images.transpose(0, 3, 1, 2) # (num, c, h, w)
|
313 |
+
else:
|
314 |
+
processed_images = [self.forced_transform(image).numpy() for image in images]
|
315 |
+
processed_images = np.array(processed_images)
|
316 |
+
|
317 |
+
if processed_images.shape[0] == 1:
|
318 |
+
processed_images = np.tile(processed_images, (self.temporal_patch_size, 1, 1, 1))
|
319 |
+
|
320 |
+
return torch.from_numpy(processed_images)
|
321 |
+
|
322 |
+
@staticmethod
|
323 |
+
def convert_to_rgb(image):
|
324 |
+
if not isinstance(image, Image.Image):
|
325 |
+
return image
|
326 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
327 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
328 |
+
if image.mode == "RGB":
|
329 |
+
return image
|
330 |
+
image_rgba = image.convert("RGBA")
|
331 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
332 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
333 |
+
alpha_composite = alpha_composite.convert("RGB")
|
334 |
+
return alpha_composite
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
def resize(image, size, resample, return_numpy: bool = True) -> np.ndarray:
|
338 |
+
"""
|
339 |
+
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
|
340 |
+
"""
|
341 |
+
if not len(size) == 2:
|
342 |
+
raise ValueError("size must have 2 elements")
|
343 |
+
assert isinstance(image, Image.Image)
|
344 |
+
height, width = size
|
345 |
+
resample = resample if resample is not None else Image.Resampling.BILINEAR
|
346 |
+
# PIL images are in the format (width, height)
|
347 |
+
resized_image = image.resize((width, height), resample=resample, reducing_gap=None)
|
348 |
+
if return_numpy:
|
349 |
+
resized_image = np.array(resized_image)
|
350 |
+
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
|
351 |
+
return resized_image
|
352 |
+
|
353 |
+
@staticmethod
|
354 |
+
def rescale(image: np.ndarray, scale: float, dtype: np.dtype = np.float32) -> np.ndarray:
|
355 |
+
if not isinstance(image, np.ndarray):
|
356 |
+
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
|
357 |
+
rescaled_image = image * scale
|
358 |
+
rescaled_image = rescaled_image.astype(dtype)
|
359 |
+
return rescaled_image
|
360 |
+
|
361 |
+
@staticmethod
|
362 |
+
def normalize(image, mean, std) -> np.ndarray:
|
363 |
+
"""
|
364 |
+
Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
|
365 |
+
image = (image - mean) / std
|
366 |
+
"""
|
367 |
+
if not isinstance(image, np.ndarray):
|
368 |
+
raise ValueError("image must be a numpy array")
|
369 |
+
num_channels = image.shape[-1]
|
370 |
+
# We cast to float32 to avoid errors that can occur when subtracting uint8 values.
|
371 |
+
# We preserve the original dtype if it is a float type to prevent upcasting float16.
|
372 |
+
if not np.issubdtype(image.dtype, np.floating):
|
373 |
+
image = image.astype(np.float32)
|
374 |
+
if isinstance(mean, Iterable):
|
375 |
+
if len(mean) != num_channels:
|
376 |
+
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
|
377 |
+
else:
|
378 |
+
mean = [mean] * num_channels
|
379 |
+
mean = np.array(mean, dtype=image.dtype)
|
380 |
+
if isinstance(std, Iterable):
|
381 |
+
if len(std) != num_channels:
|
382 |
+
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
|
383 |
+
else:
|
384 |
+
std = [std] * num_channels
|
385 |
+
std = np.array(std, dtype=image.dtype)
|
386 |
+
image = (image - mean) / std
|
387 |
+
return image
|
388 |
+
|
389 |
+
@staticmethod
|
390 |
+
def smart_resize(height, width, factor, min_pixels, max_pixels):
|
391 |
+
"""
|
392 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
393 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
394 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
395 |
+
"""
|
396 |
+
if height < factor or width < factor:
|
397 |
+
if height < factor:
|
398 |
+
ratio = factor / height
|
399 |
+
height, width = factor, int(ratio * width) + 1
|
400 |
+
if width < factor:
|
401 |
+
ratio = factor / width
|
402 |
+
width, height = factor, int(ratio * height) + 1
|
403 |
+
h_bar = round(height / factor) * factor
|
404 |
+
w_bar = round(width / factor) * factor
|
405 |
+
if h_bar * w_bar > max_pixels:
|
406 |
+
beta = math.sqrt((height * width) / max_pixels)
|
407 |
+
h_bar = math.floor(height / beta / factor) * factor
|
408 |
+
w_bar = math.floor(width / beta / factor) * factor
|
409 |
+
elif h_bar * w_bar < min_pixels:
|
410 |
+
beta = math.sqrt(min_pixels / (height * width))
|
411 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
412 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
413 |
+
return h_bar, w_bar
|
414 |
+
|
415 |
+
|
416 |
+
class SwiGLU(nn.Module):
|
417 |
+
def __init__(self, config: UniViTARVisionConfig):
|
418 |
+
super().__init__()
|
419 |
+
self.config = config
|
420 |
+
self.inner_hidden_size = int(config.intermediate_size * 2 / 3)
|
421 |
+
self.act = ACT2FN['silu']
|
422 |
+
self.fc1 = nn.Linear(config.hidden_size, self.inner_hidden_size)
|
423 |
+
self.fc2 = nn.Linear(self.inner_hidden_size, config.hidden_size)
|
424 |
+
self.fc3 = nn.Linear(config.hidden_size, self.inner_hidden_size)
|
425 |
+
self.norm = RMSNorm(self.inner_hidden_size, eps=config.layer_norm_eps)
|
426 |
+
|
427 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
428 |
+
hidden_states = self.fc1(x)
|
429 |
+
hidden_states = self.act(hidden_states)
|
430 |
+
hidden_states = self.fc2(self.norm(hidden_states * self.fc3(x)))
|
431 |
+
return hidden_states
|
432 |
+
|
433 |
+
|
434 |
+
class Attention(nn.Module):
|
435 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
436 |
+
def __init__(self, config: UniViTARVisionConfig):
|
437 |
+
super().__init__()
|
438 |
+
self.config = config
|
439 |
+
self.embed_dim = config.hidden_size
|
440 |
+
self.num_heads = config.num_attention_heads
|
441 |
+
self.head_dim = self.embed_dim // self.num_heads
|
442 |
+
assert config.use_flash_attn is True, "FlashAttention must be used!"
|
443 |
+
assert self.head_dim * self.num_heads == self.embed_dim
|
444 |
+
|
445 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
446 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
447 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
448 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
449 |
+
if self.config.qk_normalization:
|
450 |
+
self.q_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
451 |
+
self.k_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
452 |
+
|
453 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
|
454 |
+
key_padding_mask = kwargs.get("key_padding_mask", None)
|
455 |
+
rotary_pos_emb = kwargs["rotary_pos_emb"]
|
456 |
+
|
457 |
+
qkv = self.qkv(hidden_states)
|
458 |
+
qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, h=self.num_heads)
|
459 |
+
bind_dim = qkv.dim() - 3
|
460 |
+
target_dtype = qkv.dtype
|
461 |
+
q, k, v = qkv.unbind(bind_dim)
|
462 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
463 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
464 |
+
if self.config.qk_normalization:
|
465 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
466 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
467 |
+
qkv = torch.stack([q, k, v], dim=bind_dim).to(target_dtype)
|
468 |
+
context, _ = self.inner_attn(qkv, key_padding_mask=key_padding_mask, causal=False)
|
469 |
+
|
470 |
+
outs = self.proj(rearrange(context, '... h d -> ... (h d)')) # input expected to be: [b s h d] or [s h d]
|
471 |
+
outs = self.proj_drop(outs)
|
472 |
+
|
473 |
+
return outs
|
474 |
+
|
475 |
+
|
476 |
+
class UniViTARVisionEmbeddings(nn.Module):
|
477 |
+
def __init__(self, config: UniViTARVisionConfig):
|
478 |
+
super().__init__()
|
479 |
+
self.config = config
|
480 |
+
self.embed_dim = config.hidden_size
|
481 |
+
self.patch_size = config.patch_size
|
482 |
+
self.temporal_patch_size = config.temporal_patch_size
|
483 |
+
self.kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
|
484 |
+
self.use_bias = config.patch_embedding_bias
|
485 |
+
self.patch_embedding = nn.Conv3d(
|
486 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.kernel_size, stride=self.kernel_size, bias=self.use_bias)
|
487 |
+
|
488 |
+
def forward(self, pixel_values: torch.FloatTensor, **kwargs) -> torch.Tensor:
|
489 |
+
pixel_values = pixel_values.view(-1, 3, *self.kernel_size)
|
490 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
491 |
+
embeddings = patch_embeds.view(1, -1, self.embed_dim)
|
492 |
+
self.num_patches = embeddings.shape[1]
|
493 |
+
return embeddings
|
494 |
+
|
495 |
+
|
496 |
+
class UniViTARVisionEncoderLayer(nn.Module):
|
497 |
+
def __init__(self, config: UniViTARVisionConfig, drop_path_rate: float):
|
498 |
+
super().__init__()
|
499 |
+
self.embed_dim = config.hidden_size
|
500 |
+
assert config.hidden_act == "SwiGLU"
|
501 |
+
|
502 |
+
self.attn = Attention(config)
|
503 |
+
self.norm1 = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
504 |
+
self.norm2 = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
505 |
+
self.mlp = SwiGLU(config)
|
506 |
+
|
507 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
508 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
509 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
510 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
511 |
+
|
512 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
513 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states), **kwargs) * self.ls1)
|
514 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
515 |
+
return hidden_states
|
516 |
+
|
517 |
+
|
518 |
+
class UniViTARVisionEncoder(nn.Module):
|
519 |
+
""" Transformer encoder consisting of `config.num_hidden_layers` self attention layers. """
|
520 |
+
def __init__(self, config: UniViTARVisionConfig):
|
521 |
+
super().__init__()
|
522 |
+
self.config = config
|
523 |
+
self.gradient_checkpointing = True
|
524 |
+
|
525 |
+
# stochastic depth decay rule
|
526 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
527 |
+
self.layers = nn.ModuleList([UniViTARVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
528 |
+
if self.config.pe_type == "rope2d":
|
529 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
530 |
+
self.rotary_pos_emb = VisionRotaryEmbedding2D(head_dim // 2, theta=self.config.rope_theta)
|
531 |
+
else:
|
532 |
+
raise NotImplementedError
|
533 |
+
|
534 |
+
def forward(self, inputs_embeds, output_hidden_states = False, **kwargs):
|
535 |
+
kwargs["rotary_pos_emb"] = self.rotary_pos_emb(kwargs["grid_shapes"], self.config.spatial_merge_size)
|
536 |
+
|
537 |
+
encoder_states = () if output_hidden_states else None
|
538 |
+
hidden_states = inputs_embeds
|
539 |
+
for idx, encoder_layer in enumerate(self.layers):
|
540 |
+
if output_hidden_states:
|
541 |
+
encoder_states = encoder_states + (hidden_states,)
|
542 |
+
if self.gradient_checkpointing and self.training:
|
543 |
+
encoder_layer_forward = partial(encoder_layer, **kwargs)
|
544 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(encoder_layer_forward, hidden_states, use_reentrant=True)
|
545 |
+
else:
|
546 |
+
layer_outputs = encoder_layer(hidden_states, **kwargs)
|
547 |
+
hidden_states = layer_outputs
|
548 |
+
if output_hidden_states:
|
549 |
+
encoder_states = encoder_states + (hidden_states,)
|
550 |
+
|
551 |
+
return BaseModelOutputWithKwargs(last_hidden_state=hidden_states, hidden_states=encoder_states, kwargs=kwargs)
|
552 |
+
|
553 |
+
|
554 |
+
class UniViTARVisionModel(PreTrainedModel):
|
555 |
+
main_input_name = 'pixel_values'
|
556 |
+
config_class = UniViTARVisionConfig
|
557 |
+
_no_split_modules = ['UniViTARVisionEncoderLayer']
|
558 |
+
|
559 |
+
def __init__(self, model_config_path, *args, **kwargs):
|
560 |
+
|
561 |
+
model_config_dict = json.load(open(model_config_path, "r", encoding="utf8"))
|
562 |
+
config = UniViTARVisionConfig.from_dict(model_config_dict)
|
563 |
+
|
564 |
+
super().__init__(config)
|
565 |
+
self.config = config
|
566 |
+
self.image_transform = UniViTARImageTransform(config)
|
567 |
+
|
568 |
+
self.embeddings = UniViTARVisionEmbeddings(config)
|
569 |
+
self.encoder = UniViTARVisionEncoder(config)
|
570 |
+
|
571 |
+
def get_input_embeddings(self):
|
572 |
+
return self.embeddings
|
573 |
+
|
574 |
+
def get_padding_mask(self, grid_shapes):
|
575 |
+
seq_len = torch.tensor([int((np.prod(thw) - 1) + 1) for thw in grid_shapes])
|
576 |
+
max_len = torch.max(seq_len)
|
577 |
+
batch_size = len(grid_shapes)
|
578 |
+
mask = torch.zeros((batch_size, max_len), dtype=torch.long)
|
579 |
+
range_matrix = torch.arange(max_len).expand(batch_size, max_len)
|
580 |
+
mask = (range_matrix < seq_len.unsqueeze(1))
|
581 |
+
return mask.cuda()
|
582 |
+
|
583 |
+
def forward(self, pixel_values, output_hidden_states = False, **kwargs):
|
584 |
+
assert len(pixel_values.shape) == 2, "(batch_num_tokens, hidden_size)"
|
585 |
+
assert "grid_shapes" in kwargs, "grid_shapes: [(t, h, w), ..., (t, h, w)]"
|
586 |
+
kwargs["key_padding_mask"] = self.get_padding_mask(kwargs["grid_shapes"])
|
587 |
+
hidden_states = self.embeddings(pixel_values, **kwargs)
|
588 |
+
encoder_outputs = self.encoder(hidden_states, output_hidden_states, **kwargs)
|
589 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
590 |
+
return last_hidden_state.squeeze(0)
|
591 |
+
|
592 |
+
def data_patchify(self, input_data):
|
593 |
+
t, c, h, w = input_data.shape
|
594 |
+
grid_t, grid_h, grid_w = t // self.config.temporal_patch_size, h // self.config.patch_size, w // self.config.patch_size
|
595 |
+
grid_size = c * self.config.temporal_patch_size * self.config.patch_size * self.config.patch_size
|
596 |
+
input_data = input_data.reshape(
|
597 |
+
grid_t, self.config.temporal_patch_size, c,
|
598 |
+
grid_h // self.config.spatial_merge_size, self.config.spatial_merge_size, self.config.patch_size,
|
599 |
+
grid_w // self.config.spatial_merge_size, self.config.spatial_merge_size, self.config.patch_size
|
600 |
+
)
|
601 |
+
input_data = input_data.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
602 |
+
input_data = input_data.reshape(grid_t * grid_h * grid_w, grid_size).contiguous()
|
603 |
+
grid_shape = (grid_t, grid_h, grid_w)
|
604 |
+
return input_data, grid_shape
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fed2e7e0bd1596c56fff2f6ca94ceb3f1f7a86a44d7a61e56b2c7a1daf06fc78
|
3 |
+
size 619815078
|