File size: 23,225 Bytes
8ea2eff 8943a48 500cad9 8223f36 dae69c0 b7ea8a4 500cad9 8223f36 d79c41b 500cad9 854831b 500cad9 854831b 500cad9 854831b 500cad9 854831b 500cad9 8223f36 500cad9 854831b 500cad9 8223f36 500cad9 8223f36 854831b 500cad9 854831b 500cad9 8ea2eff 500cad9 6928e82 8ea2eff 500cad9 dae69c0 500cad9 d79c41b 8943a48 d79c41b 8943a48 500cad9 8ea2eff 8223f36 8ea2eff 500cad9 8943a48 500cad9 8223f36 500cad9 dae69c0 500cad9 8943a48 d79c41b 8223f36 d79c41b 8943a48 d79c41b 8943a48 d79c41b 8943a48 8223f36 8943a48 d79c41b 8943a48 d79c41b 8943a48 8223f36 8943a48 8223f36 8943a48 d79c41b 8943a48 d79c41b 8943a48 8223f36 8943a48 d79c41b 8943a48 d79c41b 500cad9 d79c41b 500cad9 d79c41b 500cad9 8223f36 500cad9 6928e82 500cad9 d79c41b 8223f36 d79c41b 500cad9 d79c41b 500cad9 8ea2eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
import argparse
import os
import pprint
import time
from typing import List, Tuple, Optional, Dict, Any
import numpy as np
import cv2
import torch
import torch.nn.functional as F
from torch.amp import autocast
from tqdm import tqdm
from safetensors.torch import load_file as safe_load_file
import yaml
from src.wireseghr.model import WireSegHR
from pathlib import Path
from src.wireseghr.metrics import compute_metrics
def _pad_for_minmax(kernel: int) -> Tuple[int, int, int, int]:
# Replicate the padding logic from train.validate for even/odd kernels
if (kernel % 2) == 0:
return (kernel // 2 - 1, kernel // 2, kernel // 2 - 1, kernel // 2)
else:
return (kernel // 2, kernel // 2, kernel // 2, kernel // 2)
@torch.no_grad()
def _coarse_forward(
model: WireSegHR,
img_rgb: np.ndarray,
coarse_size: int,
minmax_enable: bool,
minmax_kernel: int,
device: torch.device,
amp_flag: bool,
amp_dtype,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# Convert to tensor on device
t_img = (
torch.from_numpy(np.transpose(img_rgb, (2, 0, 1)))
.unsqueeze(0)
.to(device)
.float()
) # 1x3xHxW
H = img_rgb.shape[0]
W = img_rgb.shape[1]
rgb_c = F.interpolate(
t_img, size=(coarse_size, coarse_size), mode="bilinear", align_corners=False
)[0]
y_t = 0.299 * t_img[:, 0:1] + 0.587 * t_img[:, 1:2] + 0.114 * t_img[:, 2:3]
if minmax_enable:
pad = _pad_for_minmax(minmax_kernel)
y_p = F.pad(y_t, pad, mode="replicate")
y_max_full = F.max_pool2d(y_p, kernel_size=minmax_kernel, stride=1)
y_min_full = -F.max_pool2d(-y_p, kernel_size=minmax_kernel, stride=1)
else:
y_min_full = y_t
y_max_full = y_t
y_min_c = F.interpolate(
y_min_full,
size=(coarse_size, coarse_size),
mode="bilinear",
align_corners=False,
)[0]
y_max_c = F.interpolate(
y_max_full,
size=(coarse_size, coarse_size),
mode="bilinear",
align_corners=False,
)[0]
zeros_c = torch.zeros(1, coarse_size, coarse_size, device=device)
x_t = torch.cat([rgb_c, y_min_c, y_max_c, zeros_c], dim=0).unsqueeze(0)
with autocast(device_type=device.type, dtype=amp_dtype, enabled=amp_flag):
logits_c, cond_map = model.forward_coarse(x_t)
prob = torch.softmax(logits_c, dim=1)[:, 1:2]
prob_up = (
F.interpolate(prob, size=(H, W), mode="bilinear", align_corners=False)[0, 0]
.detach()
.cpu()
.float()
) # HxW torch.Tensor on CPU
return prob_up, cond_map, t_img, y_min_full, y_max_full
@torch.no_grad()
def _tiled_fine_forward(
model: WireSegHR,
t_img: torch.Tensor, # 1x3xHxW on device
cond_map: torch.Tensor, # 1x1xhxw
y_min_full: torch.Tensor, # 1x1xHxW
y_max_full: torch.Tensor, # 1x1xHxW
patch_size: int,
overlap: int,
fine_batch: int,
device: torch.device,
amp_flag: bool,
amp_dtype,
) -> torch.Tensor:
H = int(t_img.shape[2])
W = int(t_img.shape[3])
P = patch_size
stride = P - overlap
assert stride > 0
assert H >= P and W >= P
prob_sum_t = torch.zeros((H, W), device=device, dtype=torch.float32)
weight_t = torch.zeros((H, W), device=device, dtype=torch.float32)
hc4, wc4 = cond_map.shape[2], cond_map.shape[3]
ys = list(range(0, H - P + 1, stride))
if ys[-1] != (H - P):
ys.append(H - P)
xs = list(range(0, W - P + 1, stride))
if xs[-1] != (W - P):
xs.append(W - P)
coords: List[Tuple[int, int]] = []
for y0 in ys:
for x0 in xs:
coords.append((y0, x0))
for i0 in range(0, len(coords), fine_batch):
batch_coords = coords[i0 : i0 + fine_batch]
xs_list: List[torch.Tensor] = []
for y0, x0 in batch_coords:
y1, x1 = y0 + P, x0 + P
# Map to cond grid
y0c = (y0 * hc4) // H
y1c = ((y1 * hc4) + H - 1) // H
x0c = (x0 * wc4) // W
x1c = ((x1 * wc4) + W - 1) // W
cond_sub = cond_map[:, :, y0c:y1c, x0c:x1c].float()
cond_patch = F.interpolate(
cond_sub, size=(P, P), mode="bilinear", align_corners=False
).squeeze(1) # 1xPxP
rgb_t = t_img[0, :, y0:y1, x0:x1] # 3xPxP
ymin_t = y_min_full[0, 0, y0:y1, x0:x1].float().unsqueeze(0) # 1xPxP
ymax_t = y_max_full[0, 0, y0:y1, x0:x1].float().unsqueeze(0) # 1xPxP
x_f = torch.cat([rgb_t, ymin_t, ymax_t, cond_patch], dim=0).unsqueeze(0)
xs_list.append(x_f)
x_f_batch = torch.cat(xs_list, dim=0) # Bx6xPxP
with autocast(device_type=device.type, dtype=amp_dtype, enabled=amp_flag):
logits_f = model.forward_fine(x_f_batch)
prob_f = torch.softmax(logits_f, dim=1)[:, 1:2]
prob_f_up = F.interpolate(
prob_f, size=(P, P), mode="bilinear", align_corners=False
)[:, 0, :, :] # BxPxP
for bi, (y0, x0) in enumerate(batch_coords):
y1, x1 = y0 + P, x0 + P
prob_sum_t[y0:y1, x0:x1] += prob_f_up[bi]
weight_t[y0:y1, x0:x1] += 1.0
prob_full = (prob_sum_t / weight_t).detach().cpu().float()
return prob_full # HxW torch.Tensor on CPU
def _build_model_from_cfg(cfg: dict, device: torch.device) -> WireSegHR:
pretrained_flag = bool(cfg.get("pretrained", False))
model = WireSegHR(
backbone=cfg["backbone"], in_channels=6, pretrained=pretrained_flag
)
model = model.to(device)
return model
@torch.no_grad()
def infer_image(
model: WireSegHR,
img_path: str,
cfg: dict,
device: torch.device,
amp_flag: bool,
amp_dtype,
out_dir: Optional[str] = None,
save_prob: bool = False,
prob_thresh: Optional[float] = None,
) -> Tuple[np.ndarray, np.ndarray]:
assert Path(img_path).is_file(), f"Image not found: {img_path}"
bgr = cv2.imread(img_path, cv2.IMREAD_COLOR)
assert bgr is not None, f"Failed to read {img_path}"
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
coarse_size = int(cfg["coarse"]["test_size"])
patch_size = int(cfg["inference"]["fine_patch_size"]) # 1024 for inference
overlap = int(cfg["fine"]["overlap"])
minmax_enable = bool(cfg["minmax"]["enable"])
minmax_kernel = int(cfg["minmax"]["kernel"])
if prob_thresh is None:
prob_thresh = float(cfg["inference"]["prob_threshold"])
prob_c, cond_map, t_img, y_min_full, y_max_full = _coarse_forward(
model,
rgb,
coarse_size,
minmax_enable,
minmax_kernel,
device,
amp_flag,
amp_dtype,
)
prob_f = _tiled_fine_forward(
model,
t_img,
cond_map,
y_min_full,
y_max_full,
patch_size,
overlap,
int(cfg.get("eval", {}).get("fine_batch", 16)),
device,
amp_flag,
amp_dtype,
)
# Threshold with torch on CPU; convert to numpy only for saving/returning
pred_t = (prob_f > prob_thresh).to(torch.uint8) * 255 # HxW uint8 torch
pred = pred_t.detach().cpu().numpy()
if out_dir is not None:
os.makedirs(out_dir, exist_ok=True)
stem = Path(img_path).stem
out_mask = Path(out_dir) / f"{stem}_pred.png"
cv2.imwrite(str(out_mask), pred)
if save_prob:
out_prob = Path(out_dir) / f"{stem}_prob.npy"
np.save(out_prob, prob_f.detach().cpu().float().numpy())
# Return numpy arrays for external consumers, computed via torch
return pred, prob_f.detach().cpu().numpy()
def main():
parser = argparse.ArgumentParser(description="WireSegHR inference")
parser.add_argument(
"--config", type=str, default="configs/default.yaml", help="Path to YAML config"
)
parser.add_argument("--image", type=str, required=False, help="Path to input image")
parser.add_argument(
"--images_dir",
type=str,
required=False,
help="Directory with .jpg/.jpeg images",
)
parser.add_argument(
"--out", type=str, default="outputs/infer", help="Directory to save predictions"
)
parser.add_argument(
"--ckpt",
type=str,
default="",
help="Optional checkpoint (.pt with {'model': state_dict} or .safetensors with pure state_dict)",
)
parser.add_argument(
"--save_prob", action="store_true", help="Also save probability .npy"
)
# Metrics options
parser.add_argument(
"--metrics",
action="store_true",
help="Compute IoU, F1, Precision, Recall if ground-truth masks are provided",
)
parser.add_argument(
"--mask",
type=str,
default="",
help="Path to ground-truth mask (.png) for --image when --metrics is set",
)
parser.add_argument(
"--masks_dir",
type=str,
default="",
help="Directory with ground-truth masks (.png) for --images_dir when --metrics is set",
)
# Benchmarking options
parser.add_argument(
"--benchmark",
action="store_true",
help="Run benchmarking on a directory (defaults to cfg.data.test_images)",
)
parser.add_argument(
"--bench_images_dir",
type=str,
default="",
help="Images dir for benchmark (overrides cfg.data.test_images if set)",
)
parser.add_argument(
"--bench_masks_dir",
type=str,
default="",
help="Masks dir for benchmark (overrides cfg.data.test_masks if set; used with --metrics)",
)
parser.add_argument(
"--bench_limit",
type=int,
default=0,
help="Limit number of images for benchmark (0 means all)",
)
parser.add_argument(
"--bench_warmup",
type=int,
default=2,
help="Number of warmup images (excluded from stats)",
)
parser.add_argument(
"--bench_size_filter",
type=str,
default="",
help="Only benchmark images matching HxW, e.g. 3000x4000",
)
parser.add_argument(
"--bench_report_json",
type=str,
default="",
help="Optional path to save JSON report of timings",
)
args = parser.parse_args()
cfg_path = args.config
if not Path(cfg_path).is_absolute():
cfg_path = str(Path.cwd() / cfg_path)
with open(cfg_path, "r") as f:
cfg = yaml.safe_load(f)
print("[WireSegHR][infer] Loaded config from:", cfg_path)
pprint.pprint(cfg)
# If benchmarking, do not require --image/--images_dir
if not args.benchmark:
assert (args.image is not None) ^ (args.images_dir is not None), (
"Provide exactly one of --image or --images_dir"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
precision = str(cfg["optim"].get("precision", "fp32")).lower()
assert precision in ("fp32", "fp16", "bf16")
amp_enabled = (device.type == "cuda") and (precision in ("fp16", "bf16"))
amp_dtype = (
torch.float16
if precision == "fp16"
else (torch.bfloat16 if precision == "bf16" else None)
)
model = _build_model_from_cfg(cfg, device)
ckpt_path = args.ckpt if args.ckpt else cfg.get("resume", "")
if ckpt_path:
assert Path(ckpt_path).is_file(), f"Checkpoint not found: {ckpt_path}"
print(f"[WireSegHR][infer] Loading checkpoint: {ckpt_path}")
suffix = Path(ckpt_path).suffix.lower()
if suffix == ".safetensors":
# Safetensors exports contain a pure state_dict
state_dict = safe_load_file(ckpt_path)
model.load_state_dict(state_dict)
else:
print(
"[WireSegHR][infer][WARN] Loading a PyTorch checkpoint. Prefer .safetensors for inference-only weights."
)
# PyTorch .pt/.pth checkpoints expected to have {'model': state_dict}
state = torch.load(ckpt_path, map_location=device)
assert "model" in state, (
"Expected a dict with key 'model' for PyTorch checkpoint. "
"Use scripts/strip_checkpoint.py or provide a .safetensors file."
)
model.load_state_dict(state["model"])
model.eval()
# Benchmark mode
if args.benchmark:
# Resolve image and mask directories
bench_dir = args.bench_images_dir or cfg["data"]["test_images"]
assert Path(bench_dir).is_dir(), f"Not a directory: {bench_dir}"
if args.metrics:
bench_masks_dir = args.bench_masks_dir or cfg["data"]["test_masks"]
assert Path(bench_masks_dir).is_dir(), f"Not a directory: {bench_masks_dir}"
# Optional size filter
size_filter: Optional[Tuple[int, int]] = None
if args.bench_size_filter:
try:
h_str, w_str = args.bench_size_filter.lower().split("x")
size_filter = (int(h_str), int(w_str))
except Exception:
raise AssertionError(
f"Invalid --bench_size_filter format: {args.bench_size_filter} (use HxW)"
)
# Gather images
img_files = sorted(
[
str(Path(bench_dir) / p)
for p in os.listdir(bench_dir)
if p.lower().endswith((".jpg", ".jpeg"))
]
)
assert len(img_files) > 0, f"No .jpg/.jpeg in {bench_dir}"
# Filter by size if requested
if size_filter is not None:
filt_files: List[str] = []
for p in img_files:
bgr = cv2.imread(p, cv2.IMREAD_COLOR)
assert bgr is not None, f"Failed to read {p}"
if bgr.shape[0] == size_filter[0] and bgr.shape[1] == size_filter[1]:
filt_files.append(p)
img_files = filt_files
assert len(img_files) > 0, (
f"No images matching {size_filter[0]}x{size_filter[1]} in {bench_dir}"
)
# Limit
if args.bench_limit > 0:
img_files = img_files[: args.bench_limit]
print(f"[WireSegHR][bench] Images: {len(img_files)} from {bench_dir}")
print(f"[WireSegHR][bench] Warmup: {args.bench_warmup}")
def _sync():
if device.type == "cuda":
torch.cuda.synchronize()
timings: List[Dict[str, Any]] = []
# Metric accumulators (for timed runs only)
if args.metrics:
fine_sum: Dict[str, float] = {"iou": 0.0, "f1": 0.0, "precision": 0.0, "recall": 0.0}
coarse_sum: Dict[str, float] = {"iou": 0.0, "f1": 0.0, "precision": 0.0, "recall": 0.0}
n_metrics = 0
# Warmup
for i in tqdm(range(min(args.bench_warmup, len(img_files))), desc="[bench] Warmup"):
_ = infer_image(
model,
img_files[i],
cfg,
device,
amp_enabled,
amp_dtype,
out_dir=None,
save_prob=False,
)
# Timed runs
for p in tqdm(img_files[args.bench_warmup :], desc="[bench] Timed"):
# Replicate internals to time coarse vs fine separately
bgr = cv2.imread(p, cv2.IMREAD_COLOR)
assert bgr is not None, f"Failed to read {p}"
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
coarse_size = int(cfg["coarse"]["test_size"])
minmax_enable = bool(cfg["minmax"]["enable"])
minmax_kernel = int(cfg["minmax"]["kernel"])
_sync(); t0 = time.perf_counter()
prob_c, cond_map, t_img, y_min_full, y_max_full = _coarse_forward(
model,
rgb,
coarse_size,
minmax_enable,
minmax_kernel,
device,
amp_enabled,
amp_dtype,
)
_sync(); t1 = time.perf_counter()
patch_size = int(cfg["inference"]["fine_patch_size"]) # 1024
overlap = int(cfg["fine"]["overlap"])
prob_f = _tiled_fine_forward(
model,
t_img,
cond_map,
y_min_full,
y_max_full,
patch_size,
overlap,
int(cfg.get("eval", {}).get("fine_batch", 16)),
device,
amp_enabled,
amp_dtype,
)
_sync(); t2 = time.perf_counter()
# Optional metrics computation
if args.metrics:
stem = Path(p).stem
gt_path = Path(bench_masks_dir) / f"{stem}.png"
assert gt_path.is_file(), f"Missing mask for {stem}: {gt_path}"
gt = cv2.imread(str(gt_path), cv2.IMREAD_GRAYSCALE)
assert gt is not None, f"Failed to read mask: {gt_path}"
gt_bin = (gt > 0).astype(np.uint8)
prob_thresh = float(cfg["inference"]["prob_threshold"])
pred_coarse = (prob_c > prob_thresh).to(torch.uint8).cpu().numpy()
pred_fine = (prob_f > prob_thresh).to(torch.uint8).cpu().numpy()
m_c = compute_metrics(pred_coarse, gt_bin)
m_f = compute_metrics(pred_fine, gt_bin)
for k in coarse_sum:
coarse_sum[k] += m_c[k]
for k in fine_sum:
fine_sum[k] += m_f[k]
n_metrics += 1
timings.append(
{
"path": p,
"H": int(t_img.shape[2]),
"W": int(t_img.shape[3]),
"t_coarse_ms": (t1 - t0) * 1000.0,
"t_fine_ms": (t2 - t1) * 1000.0,
"t_total_ms": (t2 - t0) * 1000.0,
}
)
if len(timings) == 0:
print("[WireSegHR][bench] Nothing to benchmark after warmup.")
return
# Aggregate
def _agg(key: str) -> Tuple[float, float, float]:
vals = sorted([t[key] for t in timings])
n = len(vals)
p50 = vals[n // 2]
p95 = vals[min(n - 1, int(0.95 * (n - 1)))]
avg = sum(vals) / n
return avg, p50, p95
avg_c, p50_c, p95_c = _agg("t_coarse_ms")
avg_f, p50_f, p95_f = _agg("t_fine_ms")
avg_t, p50_t, p95_t = _agg("t_total_ms")
print("[WireSegHR][bench] Results (ms):")
print(f" Coarse avg={avg_c:.2f} p50={p50_c:.2f} p95={p95_c:.2f}")
print(f" Fine avg={avg_f:.2f} p50={p50_f:.2f} p95={p95_f:.2f}")
print(f" Total avg={avg_t:.2f} p50={p50_t:.2f} p95={p95_t:.2f}")
print(f" Target < 1000 ms per 3000x4000 image: {'YES' if p50_t < 1000.0 else 'NO'}")
if args.bench_report_json:
import json
report = {
"summary": {
"avg_ms": avg_t,
"p50_ms": p50_t,
"p95_ms": p95_t,
"avg_coarse_ms": avg_c,
"avg_fine_ms": avg_f,
"images": len(timings),
},
"per_image": timings,
}
report_path = args.bench_report_json
Path(report_path).parent.mkdir(parents=True, exist_ok=True)
with open(report_path, "w") as f:
json.dump(report, f, indent=2)
# Print aggregated metrics if requested
if args.metrics:
if n_metrics > 0:
for k in fine_sum:
fine_sum[k] /= n_metrics
for k in coarse_sum:
coarse_sum[k] /= n_metrics
print(
f"[WireSegHR][bench][Fine] IoU={fine_sum['iou']:.4f} F1={fine_sum['f1']:.4f} P={fine_sum['precision']:.4f} R={fine_sum['recall']:.4f}"
)
print(
f"[WireSegHR][bench][Coarse] IoU={coarse_sum['iou']:.4f} F1={coarse_sum['f1']:.4f} P={coarse_sum['precision']:.4f} R={coarse_sum['recall']:.4f}"
)
return
# Single image mode
if args.image is not None:
pred, _ = infer_image(
model,
args.image,
cfg,
device,
amp_enabled,
amp_dtype,
out_dir=args.out,
save_prob=args.save_prob,
)
if args.metrics:
assert args.mask, "--mask is required with --image when --metrics is set"
assert Path(args.mask).is_file(), f"Mask not found: {args.mask}"
gt = cv2.imread(args.mask, cv2.IMREAD_GRAYSCALE)
assert gt is not None, f"Failed to read mask: {args.mask}"
gt_bin = (gt > 0).astype(np.uint8)
pred_bin = (pred > 0).astype(np.uint8)
m = compute_metrics(pred_bin, gt_bin)
print(
f"[Infer] IoU={m['iou']:.4f} F1={m['f1']:.4f} P={m['precision']:.4f} R={m['recall']:.4f}"
)
print("[WireSegHR][infer] Done.")
return
# Directory mode
img_dir = args.images_dir
assert Path(img_dir).is_dir(), f"Not a directory: {img_dir}"
img_files = sorted(
[p for p in os.listdir(img_dir) if p.lower().endswith((".jpg", ".jpeg"))]
)
assert len(img_files) > 0, f"No .jpg/.jpeg in {img_dir}"
os.makedirs(args.out, exist_ok=True)
if args.metrics:
assert args.masks_dir, (
"--masks_dir is required with --images_dir when --metrics is set"
)
assert Path(args.masks_dir).is_dir(), f"Not a directory: {args.masks_dir}"
metrics_sum = {"iou": 0.0, "f1": 0.0, "precision": 0.0, "recall": 0.0}
n_eval = 0
for name in tqdm(img_files, desc="[infer] Dir"):
path = str(Path(img_dir) / name)
pred, _ = infer_image(
model,
path,
cfg,
device,
amp_enabled,
amp_dtype,
out_dir=args.out,
save_prob=args.save_prob,
)
if args.metrics:
stem = Path(name).stem
mask_path = Path(args.masks_dir) / f"{stem}.png"
assert mask_path.is_file(), f"Missing mask for {stem}: {mask_path}"
gt = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE)
assert gt is not None, f"Failed to read mask: {mask_path}"
gt_bin = (gt > 0).astype(np.uint8)
pred_bin = (pred > 0).astype(np.uint8)
m = compute_metrics(pred_bin, gt_bin)
for k in metrics_sum:
metrics_sum[k] += m[k]
n_eval += 1
if args.metrics and n_eval > 0:
for k in metrics_sum:
metrics_sum[k] /= n_eval
print(
f"[Infer][Avg over {n_eval}] IoU={metrics_sum['iou']:.4f} F1={metrics_sum['f1']:.4f} P={metrics_sum['precision']:.4f} R={metrics_sum['recall']:.4f}"
)
print("[WireSegHR][infer] Done.")
if __name__ == "__main__":
main()
|