Upload config
Browse files- README.md +199 -0
- config.json +14 -0
- prosody_preprocessor.py +201 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoConfig": "prosody_preprocessor.ProsodyConfig"
|
4 |
+
},
|
5 |
+
"f0_max": 500.0,
|
6 |
+
"f0_min": 65.0,
|
7 |
+
"frame_length": 20.0,
|
8 |
+
"frame_space": 5.0,
|
9 |
+
"intensity_max": 100.0,
|
10 |
+
"intensity_min": 0.0,
|
11 |
+
"model_type": "prosody_preprocessor",
|
12 |
+
"sampling_rate": 16000,
|
13 |
+
"transformers_version": "4.52.4"
|
14 |
+
}
|
prosody_preprocessor.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import amfm_decompy.basic_tools as basic
|
3 |
+
import amfm_decompy.pYAAPT as pYAAPT
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Dict, List, Optional
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import dataclasses
|
9 |
+
import parselmouth
|
10 |
+
from transformers import PreTrainedModel,PretrainedConfig
|
11 |
+
from datasets import Dataset
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class SpeakerStats:
|
15 |
+
f0_mean: float
|
16 |
+
f0_std: float
|
17 |
+
intensity_mean: float
|
18 |
+
intensity_std: float
|
19 |
+
|
20 |
+
@classmethod
|
21 |
+
def from_features(cls, f0_values: List[np.ndarray], intensity_values: List[np.ndarray]):
|
22 |
+
"""Calculate stats from a list of features"""
|
23 |
+
# Convert lists to numpy arrays
|
24 |
+
f0_arrays = [np.array(f0) for f0 in f0_values]
|
25 |
+
intensity_arrays = [np.array(i) for i in intensity_values]
|
26 |
+
|
27 |
+
# Now we can use numpy operations
|
28 |
+
f0_concat = np.concatenate([f0[f0 != 0] for f0 in f0_arrays])
|
29 |
+
intensity_concat = np.concatenate(intensity_arrays)
|
30 |
+
|
31 |
+
print(f"F0 shape: {f0_concat.shape}")
|
32 |
+
print(f"Intensity shape: {intensity_concat.shape}")
|
33 |
+
|
34 |
+
return cls(
|
35 |
+
f0_mean=float(np.mean(f0_concat)),
|
36 |
+
f0_std=float(np.std(f0_concat)),
|
37 |
+
intensity_mean=float(np.mean(intensity_concat)),
|
38 |
+
intensity_std=float(np.std(intensity_concat))
|
39 |
+
)
|
40 |
+
|
41 |
+
class ProsodyConfig(PretrainedConfig):
|
42 |
+
"""Configuration class for prosody preprocessing"""
|
43 |
+
model_type = "prosody_preprocessor"
|
44 |
+
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
sampling_rate: int = 16000,
|
48 |
+
frame_length: float = 20.0, # in ms
|
49 |
+
frame_space: float = 5.0, # in ms
|
50 |
+
f0_min: float = 65.0,
|
51 |
+
f0_max: float = 500.0,
|
52 |
+
intensity_min: float = 0.0,
|
53 |
+
intensity_max: float = 100.0,
|
54 |
+
**kwargs
|
55 |
+
):
|
56 |
+
super().__init__(**kwargs)
|
57 |
+
self.sampling_rate = sampling_rate
|
58 |
+
self.frame_length = frame_length
|
59 |
+
self.frame_space = frame_space
|
60 |
+
self.f0_min = f0_min
|
61 |
+
self.f0_max = f0_max
|
62 |
+
self.intensity_min = intensity_min
|
63 |
+
self.intensity_max = intensity_max
|
64 |
+
|
65 |
+
class ProsodyPreprocessor(PreTrainedModel):
|
66 |
+
config_class = ProsodyConfig
|
67 |
+
|
68 |
+
def __init__(self, config: Optional[ProsodyConfig] = None):
|
69 |
+
self.config = config or ProsodyConfig()
|
70 |
+
self.speaker_stats: Dict[str, SpeakerStats] = {}
|
71 |
+
|
72 |
+
def extract_features(self, audio):
|
73 |
+
"""Extract F0 and intensity features"""
|
74 |
+
print(f"audio", audio)
|
75 |
+
audio = torch.Tensor(audio)
|
76 |
+
|
77 |
+
if audio.dim() == 1:
|
78 |
+
audio = audio.unsqueeze(0)
|
79 |
+
f0, f0_interp = self._get_f0(audio)
|
80 |
+
f0 = f0[0, 0, :]
|
81 |
+
f0_interpolated = f0_interp[0, 0, :]
|
82 |
+
|
83 |
+
# Remove first 5 frames as in original
|
84 |
+
f0 = f0[5:]
|
85 |
+
f0_interpolated = f0_interpolated[5:]
|
86 |
+
|
87 |
+
sound = parselmouth.Sound(audio.numpy(), sampling_frequency=self.config.sampling_rate, start_time=0)
|
88 |
+
print(f"Sound duration: {sound.duration} seconds")
|
89 |
+
|
90 |
+
# Extract intensity at 200Hz
|
91 |
+
intensity = sound.to_intensity(time_step=1/200.0)
|
92 |
+
print(f"Intensity duration: {intensity.duration} seconds")
|
93 |
+
intensity_values = intensity.values.T.flatten()
|
94 |
+
|
95 |
+
|
96 |
+
# Ensure same length
|
97 |
+
min_len = min(len(f0), len(intensity))
|
98 |
+
f0 = f0[:min_len]
|
99 |
+
intensity_values = intensity_values[:min_len]
|
100 |
+
# Your existing _get_f0 and intensity extraction code here
|
101 |
+
# Returns raw features
|
102 |
+
print(f"f0", f0)
|
103 |
+
return {
|
104 |
+
"f0": f0,
|
105 |
+
"f0_interp": f0_interpolated,
|
106 |
+
"intensity": intensity_values,
|
107 |
+
}
|
108 |
+
|
109 |
+
def collect_stats(self, dataset: Dataset, num_proc: int = 4, batch_size: int = 32) -> Dict[str, SpeakerStats]:
|
110 |
+
"""First pass: collect speaker statistics using dataset.map"""
|
111 |
+
|
112 |
+
# Step 1: Extract features using map
|
113 |
+
def extract_features_batch(examples):
|
114 |
+
features_list = []
|
115 |
+
for audio in examples['audio']:
|
116 |
+
features = self.extract_features(audio)
|
117 |
+
features_list.append(features)
|
118 |
+
|
119 |
+
return {
|
120 |
+
'f0': [f['f0'] for f in features_list],
|
121 |
+
'intensity': [f['intensity'] for f in features_list],
|
122 |
+
'speaker_id': examples['speaker_id']
|
123 |
+
}
|
124 |
+
|
125 |
+
# Extract features for all samples
|
126 |
+
features_dataset = dataset.map(
|
127 |
+
extract_features_batch,
|
128 |
+
batched=True,
|
129 |
+
batch_size=batch_size,
|
130 |
+
num_proc=num_proc,
|
131 |
+
# load_from_cache_file=False
|
132 |
+
remove_columns=dataset.column_names
|
133 |
+
)
|
134 |
+
|
135 |
+
print(f"features_dataset", features_dataset)
|
136 |
+
# Step 2: Group features by speaker
|
137 |
+
speaker_features = {}
|
138 |
+
for item in features_dataset:
|
139 |
+
print(f"item", item)
|
140 |
+
speaker_id = item['speaker_id']
|
141 |
+
if speaker_id not in speaker_features:
|
142 |
+
speaker_features[speaker_id] = {'f0': [], 'intensity': []}
|
143 |
+
|
144 |
+
speaker_features[speaker_id]['f0'].append(item['f0'])
|
145 |
+
speaker_features[speaker_id]['intensity'].append(item['intensity'])
|
146 |
+
|
147 |
+
# Step 3: Calculate stats per speaker
|
148 |
+
self.speaker_stats = {
|
149 |
+
spk: SpeakerStats.from_features(
|
150 |
+
feats['f0'],
|
151 |
+
feats['intensity']
|
152 |
+
)
|
153 |
+
for spk, feats in speaker_features.items()
|
154 |
+
}
|
155 |
+
|
156 |
+
return features_dataset, self.speaker_stats
|
157 |
+
|
158 |
+
def save_stats(self, path: str):
|
159 |
+
"""Save speaker stats to file"""
|
160 |
+
stats_dict = {
|
161 |
+
spk: dataclasses.asdict(stats)
|
162 |
+
for spk, stats in self.speaker_stats.items()
|
163 |
+
}
|
164 |
+
torch.save(stats_dict, path)
|
165 |
+
|
166 |
+
@classmethod
|
167 |
+
def load_stats(cls, path: str) -> Dict[str, SpeakerStats]:
|
168 |
+
"""Load speaker stats from file"""
|
169 |
+
stats_dict = torch.load(path)
|
170 |
+
return {
|
171 |
+
spk: SpeakerStats(**stats)
|
172 |
+
for spk, stats in stats_dict.items()
|
173 |
+
}
|
174 |
+
def _get_f0(self, audio: torch.Tensor):
|
175 |
+
"""Extract F0 using YAAPT."""
|
176 |
+
to_pad = int(self.config.frame_length / 1000 * self.config.sampling_rate) // 2
|
177 |
+
|
178 |
+
f0s = []
|
179 |
+
f0s_interp = []
|
180 |
+
|
181 |
+
for y in audio.numpy().astype(np.float64):
|
182 |
+
y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
|
183 |
+
signal = basic.SignalObj(y_pad, self.config.sampling_rate)
|
184 |
+
pitch = pYAAPT.yaapt(
|
185 |
+
signal,
|
186 |
+
frame_length=self.config.frame_length,
|
187 |
+
frame_space=self.config.frame_space,
|
188 |
+
nccf_thresh1=0.25,
|
189 |
+
tda_frame_length=25.0
|
190 |
+
)
|
191 |
+
f0s_interp.append(pitch.samp_interp[None, None, :])
|
192 |
+
f0s.append(pitch.samp_values[None, None, :])
|
193 |
+
|
194 |
+
f0 = np.vstack(f0s)
|
195 |
+
f0_interp = np.vstack(f0s_interp)
|
196 |
+
|
197 |
+
# Apply frequency threshold
|
198 |
+
f0[f0 > 500] = 0
|
199 |
+
f0_interp[f0_interp > 500] = 0
|
200 |
+
|
201 |
+
return f0, f0_interp
|