Upload HFECAPATDNN
Browse files- config.json +4 -0
- configuration_ecapa_tdnn.py +7 -0
- modeling_ecapa_tdnn.py +238 -0
config.json
CHANGED
@@ -3,6 +3,10 @@
|
|
3 |
"architectures": [
|
4 |
"HFECAPATDNN"
|
5 |
],
|
|
|
|
|
|
|
|
|
6 |
"model_type": "ecapa_tdnn",
|
7 |
"torch_dtype": "float32",
|
8 |
"transformers_version": "4.49.0"
|
|
|
3 |
"architectures": [
|
4 |
"HFECAPATDNN"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_ecapa_tdnn.ECAPAConfig",
|
8 |
+
"AutoModel": "modeling_ecapa_tdnn.HFECAPATDNN"
|
9 |
+
},
|
10 |
"model_type": "ecapa_tdnn",
|
11 |
"torch_dtype": "float32",
|
12 |
"transformers_version": "4.49.0"
|
configuration_ecapa_tdnn.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class ECAPAConfig(PretrainedConfig):
|
4 |
+
model_type = "ecapa_tdnn"
|
5 |
+
def __init__(self, C=1024, **kwargs):
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
self.C = C
|
modeling_ecapa_tdnn.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This is the ECAPA-TDNN model.
|
3 |
+
This model is modified and combined based on the following three projects:
|
4 |
+
1. https://github.com/clovaai/voxceleb_trainer/issues/86
|
5 |
+
2. https://github.com/lawlict/ECAPA-TDNN/blob/master/ecapa_tdnn.py
|
6 |
+
3. https://github.com/speechbrain/speechbrain/blob/96077e9a1afff89d3f5ff47cab4bca0202770e4f/speechbrain/lobes/models/ECAPA_TDNN.py
|
7 |
+
|
8 |
+
'''
|
9 |
+
|
10 |
+
import math, torch, torchaudio
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
class SEModule(nn.Module):
|
15 |
+
def __init__(self, channels, bottleneck=128):
|
16 |
+
super(SEModule, self).__init__()
|
17 |
+
self.se = nn.Sequential(
|
18 |
+
nn.AdaptiveAvgPool1d(1),
|
19 |
+
nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
|
20 |
+
nn.ReLU(),
|
21 |
+
# nn.BatchNorm1d(bottleneck), # I remove this layer
|
22 |
+
nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
|
23 |
+
nn.Sigmoid(),
|
24 |
+
)
|
25 |
+
|
26 |
+
def forward(self, input):
|
27 |
+
x = self.se(input)
|
28 |
+
return input * x
|
29 |
+
|
30 |
+
class Bottle2neck(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self, inplanes, planes, kernel_size=None, dilation=None, scale = 8):
|
33 |
+
super(Bottle2neck, self).__init__()
|
34 |
+
width = int(math.floor(planes / scale))
|
35 |
+
self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
|
36 |
+
self.bn1 = nn.BatchNorm1d(width*scale)
|
37 |
+
self.nums = scale -1
|
38 |
+
convs = []
|
39 |
+
bns = []
|
40 |
+
num_pad = math.floor(kernel_size/2)*dilation
|
41 |
+
for i in range(self.nums):
|
42 |
+
convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
|
43 |
+
bns.append(nn.BatchNorm1d(width))
|
44 |
+
self.convs = nn.ModuleList(convs)
|
45 |
+
self.bns = nn.ModuleList(bns)
|
46 |
+
self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1)
|
47 |
+
self.bn3 = nn.BatchNorm1d(planes)
|
48 |
+
self.relu = nn.ReLU()
|
49 |
+
self.width = width
|
50 |
+
self.se = SEModule(planes)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
residual = x
|
54 |
+
out = self.conv1(x)
|
55 |
+
out = self.relu(out)
|
56 |
+
out = self.bn1(out)
|
57 |
+
|
58 |
+
spx = torch.split(out, self.width, 1)
|
59 |
+
for i in range(self.nums):
|
60 |
+
if i==0:
|
61 |
+
sp = spx[i]
|
62 |
+
else:
|
63 |
+
sp = sp + spx[i]
|
64 |
+
sp = self.convs[i](sp)
|
65 |
+
sp = self.relu(sp)
|
66 |
+
sp = self.bns[i](sp)
|
67 |
+
if i==0:
|
68 |
+
out = sp
|
69 |
+
else:
|
70 |
+
out = torch.cat((out, sp), 1)
|
71 |
+
out = torch.cat((out, spx[self.nums]),1)
|
72 |
+
|
73 |
+
out = self.conv3(out)
|
74 |
+
out = self.relu(out)
|
75 |
+
out = self.bn3(out)
|
76 |
+
|
77 |
+
out = self.se(out)
|
78 |
+
out += residual
|
79 |
+
return out
|
80 |
+
|
81 |
+
class PreEmphasis(torch.nn.Module):
|
82 |
+
|
83 |
+
def __init__(self, coef: float = 0.97):
|
84 |
+
super().__init__()
|
85 |
+
self.coef = coef
|
86 |
+
self.register_buffer(
|
87 |
+
'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, input: torch.tensor) -> torch.tensor:
|
91 |
+
input = input.unsqueeze(1)
|
92 |
+
input = F.pad(input, (1, 0), 'reflect')
|
93 |
+
return F.conv1d(input, self.flipped_filter).squeeze(1)
|
94 |
+
|
95 |
+
class FbankAug(nn.Module):
|
96 |
+
|
97 |
+
def __init__(self, freq_mask_width = (0, 8), time_mask_width = (0, 10)):
|
98 |
+
self.time_mask_width = time_mask_width
|
99 |
+
self.freq_mask_width = freq_mask_width
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
def mask_along_axis(self, x, dim):
|
103 |
+
original_size = x.shape
|
104 |
+
batch, fea, time = x.shape
|
105 |
+
if dim == 1:
|
106 |
+
D = fea
|
107 |
+
width_range = self.freq_mask_width
|
108 |
+
else:
|
109 |
+
D = time
|
110 |
+
width_range = self.time_mask_width
|
111 |
+
|
112 |
+
mask_len = torch.randint(width_range[0], width_range[1], (batch, 1), device=x.device).unsqueeze(2)
|
113 |
+
mask_pos = torch.randint(0, max(1, D - mask_len.max()), (batch, 1), device=x.device).unsqueeze(2)
|
114 |
+
arange = torch.arange(D, device=x.device).view(1, 1, -1)
|
115 |
+
mask = (mask_pos <= arange) * (arange < (mask_pos + mask_len))
|
116 |
+
mask = mask.any(dim=1)
|
117 |
+
|
118 |
+
if dim == 1:
|
119 |
+
mask = mask.unsqueeze(2)
|
120 |
+
else:
|
121 |
+
mask = mask.unsqueeze(1)
|
122 |
+
|
123 |
+
x = x.masked_fill_(mask, 0.0)
|
124 |
+
return x.view(*original_size)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
x = self.mask_along_axis(x, dim=2)
|
128 |
+
x = self.mask_along_axis(x, dim=1)
|
129 |
+
return x
|
130 |
+
|
131 |
+
class ECAPA_TDNN(nn.Module):
|
132 |
+
|
133 |
+
def __init__(self, C):
|
134 |
+
|
135 |
+
super(ECAPA_TDNN, self).__init__()
|
136 |
+
|
137 |
+
self.torchfbank = torch.nn.Sequential(
|
138 |
+
PreEmphasis(),
|
139 |
+
# torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
|
140 |
+
# f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80),
|
141 |
+
torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050),
|
142 |
+
torchaudio.transforms.MelSpectrogram(
|
143 |
+
sample_rate = 22050,
|
144 |
+
n_fft = 2048,
|
145 |
+
hop_length = 512,
|
146 |
+
win_length = 2048,
|
147 |
+
# window_fn = lambda *_: window,
|
148 |
+
center = False,
|
149 |
+
power = 2.0,
|
150 |
+
n_mels = 256,
|
151 |
+
norm = "slaney",
|
152 |
+
mel_scale = "htk",
|
153 |
+
),
|
154 |
+
torchaudio.transforms.AmplitudeToDB(
|
155 |
+
stype="power", top_db=80
|
156 |
+
)
|
157 |
+
)
|
158 |
+
|
159 |
+
self.specaug = FbankAug() # Spec augmentation
|
160 |
+
|
161 |
+
# self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
|
162 |
+
# self.conv1 = nn.Conv1d(256, C, kernel_size=5, stride=1, padding=2)
|
163 |
+
self.conv1 = nn.Conv1d(232, C, kernel_size=5, stride=1, padding=2)
|
164 |
+
self.relu = nn.ReLU()
|
165 |
+
self.bn1 = nn.BatchNorm1d(C)
|
166 |
+
self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
|
167 |
+
self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
|
168 |
+
self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
|
169 |
+
# I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
|
170 |
+
self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1)
|
171 |
+
self.attention = nn.Sequential(
|
172 |
+
nn.Conv1d(4608, 256, kernel_size=1),
|
173 |
+
nn.ReLU(),
|
174 |
+
nn.BatchNorm1d(256),
|
175 |
+
nn.Tanh(), # I add this layer
|
176 |
+
nn.Conv1d(256, 1536, kernel_size=1),
|
177 |
+
nn.Softmax(dim=2),
|
178 |
+
)
|
179 |
+
self.bn5 = nn.BatchNorm1d(3072)
|
180 |
+
self.fc6 = nn.Linear(3072, 192)
|
181 |
+
self.bn6 = nn.BatchNorm1d(192)
|
182 |
+
|
183 |
+
|
184 |
+
def forward(self, x, aug):
|
185 |
+
with torch.no_grad():
|
186 |
+
x = self.torchfbank(x)
|
187 |
+
# x = self.torchfbank(x)+1e-6
|
188 |
+
# x = x.log()
|
189 |
+
x = x - torch.mean(x, dim=-1, keepdim=True) # mean normalization
|
190 |
+
if aug == True:
|
191 |
+
x = self.specaug(x)
|
192 |
+
# only take the first 232 mel bins
|
193 |
+
if x.dim() == 3:
|
194 |
+
x = x[:, :232, :]
|
195 |
+
else:
|
196 |
+
x = x[:232]
|
197 |
+
|
198 |
+
x = self.conv1(x)
|
199 |
+
x = self.relu(x)
|
200 |
+
x = self.bn1(x)
|
201 |
+
|
202 |
+
x1 = self.layer1(x)
|
203 |
+
x2 = self.layer2(x+x1)
|
204 |
+
x3 = self.layer3(x+x1+x2)
|
205 |
+
|
206 |
+
x = self.layer4(torch.cat((x1,x2,x3),dim=1))
|
207 |
+
x = self.relu(x)
|
208 |
+
|
209 |
+
t = x.size()[-1]
|
210 |
+
|
211 |
+
global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1)
|
212 |
+
|
213 |
+
w = self.attention(global_x)
|
214 |
+
|
215 |
+
mu = torch.sum(x * w, dim=2)
|
216 |
+
sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) )
|
217 |
+
|
218 |
+
x = torch.cat((mu,sg),1)
|
219 |
+
x = self.bn5(x)
|
220 |
+
x = self.fc6(x)
|
221 |
+
x = self.bn6(x)
|
222 |
+
|
223 |
+
return x
|
224 |
+
|
225 |
+
|
226 |
+
import torch
|
227 |
+
from transformers import PreTrainedModel
|
228 |
+
from configuration_ecapa_tdnn import ECAPAConfig
|
229 |
+
|
230 |
+
|
231 |
+
class HFECAPATDNN(PreTrainedModel):
|
232 |
+
config_class = ECAPAConfig
|
233 |
+
base_model_prefix = "ecapa_tdnn"
|
234 |
+
def __init__(self, config):
|
235 |
+
super().__init__(config)
|
236 |
+
self.model = ECAPA_TDNN(C=config.C)
|
237 |
+
def forward(self, *args, **kwargs):
|
238 |
+
return self.model(*args, **kwargs)
|