Upload folder using huggingface_hub
Browse files- added_tokens.json +25 -0
- config.json +68 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +820 -0
- modeling.py +1721 -0
- special_tokens_map.json +25 -0
- tokenizer_config.json +205 -0
- vision_tower.bin +3 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<im_patch>": 151665,
|
4 |
+
"<tool_call>": 151657,
|
5 |
+
"<|box_end|>": 151649,
|
6 |
+
"<|box_start|>": 151648,
|
7 |
+
"<|endoftext|>": 151643,
|
8 |
+
"<|file_sep|>": 151664,
|
9 |
+
"<|fim_middle|>": 151660,
|
10 |
+
"<|fim_pad|>": 151662,
|
11 |
+
"<|fim_prefix|>": 151659,
|
12 |
+
"<|fim_suffix|>": 151661,
|
13 |
+
"<|im_end|>": 151645,
|
14 |
+
"<|im_start|>": 151644,
|
15 |
+
"<|image_pad|>": 151655,
|
16 |
+
"<|object_ref_end|>": 151647,
|
17 |
+
"<|object_ref_start|>": 151646,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|video_pad|>": 151656,
|
22 |
+
"<|vision_end|>": 151653,
|
23 |
+
"<|vision_pad|>": 151654,
|
24 |
+
"<|vision_start|>": 151652
|
25 |
+
}
|
config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"VLMQwenForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "modeling.VLMQwenConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling.VLMQwenForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 151643,
|
12 |
+
"depth": 12,
|
13 |
+
"dim": 768,
|
14 |
+
"eos_token_id": 151645,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 3584,
|
17 |
+
"high_input_size": [
|
18 |
+
32,
|
19 |
+
768
|
20 |
+
],
|
21 |
+
"high_output_size": [
|
22 |
+
64,
|
23 |
+
128
|
24 |
+
],
|
25 |
+
"initializer_range": 0.02,
|
26 |
+
"input_size": [
|
27 |
+
256,
|
28 |
+
256,
|
29 |
+
128
|
30 |
+
],
|
31 |
+
"intermediate_size": 18944,
|
32 |
+
"low_input_size": [
|
33 |
+
256,
|
34 |
+
384
|
35 |
+
],
|
36 |
+
"low_output_size": [
|
37 |
+
192,
|
38 |
+
128
|
39 |
+
],
|
40 |
+
"max_position_embeddings": 32768,
|
41 |
+
"max_window_layers": 28,
|
42 |
+
"mm_hidden_size": 768,
|
43 |
+
"mm_mlp_depth": 2,
|
44 |
+
"mm_projector_type": "mixer",
|
45 |
+
"model_type": "vlm_qwen",
|
46 |
+
"num_attention_heads": 28,
|
47 |
+
"num_hidden_layers": 28,
|
48 |
+
"num_key_value_heads": 4,
|
49 |
+
"patch_size": [
|
50 |
+
16,
|
51 |
+
16,
|
52 |
+
16
|
53 |
+
],
|
54 |
+
"proj_out_num": 256,
|
55 |
+
"rms_norm_eps": 1e-06,
|
56 |
+
"rope_scaling": null,
|
57 |
+
"rope_theta": 1000000.0,
|
58 |
+
"sliding_window": null,
|
59 |
+
"tie_word_embeddings": false,
|
60 |
+
"torch_dtype": "bfloat16",
|
61 |
+
"transformers_version": "4.48.3",
|
62 |
+
"use_cache": true,
|
63 |
+
"use_sliding_window": false,
|
64 |
+
"vision_select_feature": "cls_patch",
|
65 |
+
"vision_select_layer": -2,
|
66 |
+
"vision_tower": "dcformer",
|
67 |
+
"vocab_size": 151666
|
68 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.3"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b2418d7b4facbb6b288b05c8b7a4e9efc45714232db22ef9726300e18705582
|
3 |
+
size 4970981488
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6045591339825729e23efde8bf149b54ccacfe31d260057278ab7394addd65c
|
3 |
+
size 4778622352
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a1b0c70d4f822a7e48d5943b5532c6c469635e5c903e5262f6e4183993dbf6a
|
3 |
+
size 4932743960
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37d12057bef138430364de20a4edb7ef94e7b2be9ebd6151230fa053641085ad
|
3 |
+
size 4932743992
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07f87aad047dcec06aab134272be9f412d41776b7f3aeba4a05ddf2ffef258b8
|
3 |
+
size 4998852296
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d577d20479436de45481d01c6f33e45b8cda3fb9188acc3ec0d3a4960a84e44
|
3 |
+
size 3924909896
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e23ede018b6f13894c298d4df8d8c7c4fcd91c39ff3d94c3da19fb55758af42
|
3 |
+
size 2174283904
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 30713035928
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00007-of-00007.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00007.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
344 |
+
"model.mm_projector.high_mixer.0.ln1.bias": "model-00006-of-00007.safetensors",
|
345 |
+
"model.mm_projector.high_mixer.0.ln1.weight": "model-00006-of-00007.safetensors",
|
346 |
+
"model.mm_projector.high_mixer.0.ln2.bias": "model-00006-of-00007.safetensors",
|
347 |
+
"model.mm_projector.high_mixer.0.ln2.weight": "model-00006-of-00007.safetensors",
|
348 |
+
"model.mm_projector.high_mixer.0.mlp1.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
349 |
+
"model.mm_projector.high_mixer.0.mlp1.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
350 |
+
"model.mm_projector.high_mixer.0.mlp1.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
351 |
+
"model.mm_projector.high_mixer.0.mlp1.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
352 |
+
"model.mm_projector.high_mixer.0.mlp2.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
353 |
+
"model.mm_projector.high_mixer.0.mlp2.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
354 |
+
"model.mm_projector.high_mixer.0.mlp2.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
355 |
+
"model.mm_projector.high_mixer.0.mlp2.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
356 |
+
"model.mm_projector.high_mixer.1.ln1.bias": "model-00006-of-00007.safetensors",
|
357 |
+
"model.mm_projector.high_mixer.1.ln1.weight": "model-00006-of-00007.safetensors",
|
358 |
+
"model.mm_projector.high_mixer.1.ln2.bias": "model-00006-of-00007.safetensors",
|
359 |
+
"model.mm_projector.high_mixer.1.ln2.weight": "model-00006-of-00007.safetensors",
|
360 |
+
"model.mm_projector.high_mixer.1.mlp1.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
361 |
+
"model.mm_projector.high_mixer.1.mlp1.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
362 |
+
"model.mm_projector.high_mixer.1.mlp1.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
363 |
+
"model.mm_projector.high_mixer.1.mlp1.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
364 |
+
"model.mm_projector.high_mixer.1.mlp2.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
365 |
+
"model.mm_projector.high_mixer.1.mlp2.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
366 |
+
"model.mm_projector.high_mixer.1.mlp2.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
367 |
+
"model.mm_projector.high_mixer.1.mlp2.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
368 |
+
"model.mm_projector.low_mixer.0.ln1.bias": "model-00006-of-00007.safetensors",
|
369 |
+
"model.mm_projector.low_mixer.0.ln1.weight": "model-00006-of-00007.safetensors",
|
370 |
+
"model.mm_projector.low_mixer.0.ln2.bias": "model-00006-of-00007.safetensors",
|
371 |
+
"model.mm_projector.low_mixer.0.ln2.weight": "model-00006-of-00007.safetensors",
|
372 |
+
"model.mm_projector.low_mixer.0.mlp1.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
373 |
+
"model.mm_projector.low_mixer.0.mlp1.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
374 |
+
"model.mm_projector.low_mixer.0.mlp1.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
375 |
+
"model.mm_projector.low_mixer.0.mlp1.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
376 |
+
"model.mm_projector.low_mixer.0.mlp2.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
377 |
+
"model.mm_projector.low_mixer.0.mlp2.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
378 |
+
"model.mm_projector.low_mixer.0.mlp2.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
379 |
+
"model.mm_projector.low_mixer.0.mlp2.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
380 |
+
"model.mm_projector.low_mixer.1.ln1.bias": "model-00006-of-00007.safetensors",
|
381 |
+
"model.mm_projector.low_mixer.1.ln1.weight": "model-00006-of-00007.safetensors",
|
382 |
+
"model.mm_projector.low_mixer.1.ln2.bias": "model-00006-of-00007.safetensors",
|
383 |
+
"model.mm_projector.low_mixer.1.ln2.weight": "model-00006-of-00007.safetensors",
|
384 |
+
"model.mm_projector.low_mixer.1.mlp1.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
385 |
+
"model.mm_projector.low_mixer.1.mlp1.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
386 |
+
"model.mm_projector.low_mixer.1.mlp1.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
387 |
+
"model.mm_projector.low_mixer.1.mlp1.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
388 |
+
"model.mm_projector.low_mixer.1.mlp2.mm_projector.0.bias": "model-00006-of-00007.safetensors",
|
389 |
+
"model.mm_projector.low_mixer.1.mlp2.mm_projector.0.weight": "model-00006-of-00007.safetensors",
|
390 |
+
"model.mm_projector.low_mixer.1.mlp2.mm_projector.1.1.bias": "model-00006-of-00007.safetensors",
|
391 |
+
"model.mm_projector.low_mixer.1.mlp2.mm_projector.1.1.weight": "model-00006-of-00007.safetensors",
|
392 |
+
"model.norm.weight": "model-00006-of-00007.safetensors",
|
393 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.0.bias": "model-00006-of-00007.safetensors",
|
394 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.0.weight": "model-00006-of-00007.safetensors",
|
395 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.1.bias": "model-00006-of-00007.safetensors",
|
396 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
397 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
398 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.1.running_var": "model-00006-of-00007.safetensors",
|
399 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c1.1.weight": "model-00006-of-00007.safetensors",
|
400 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.0.bias": "model-00006-of-00007.safetensors",
|
401 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.0.weight": "model-00006-of-00007.safetensors",
|
402 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.1.bias": "model-00006-of-00007.safetensors",
|
403 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
404 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
405 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.1.running_var": "model-00006-of-00007.safetensors",
|
406 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c2.1.weight": "model-00006-of-00007.safetensors",
|
407 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.0.bias": "model-00006-of-00007.safetensors",
|
408 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.0.weight": "model-00006-of-00007.safetensors",
|
409 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.1.bias": "model-00006-of-00007.safetensors",
|
410 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
411 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
412 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.1.running_var": "model-00006-of-00007.safetensors",
|
413 |
+
"model.vision_tower.vision_tower.encoder.s0.0.0.c3.1.weight": "model-00006-of-00007.safetensors",
|
414 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.0.bias": "model-00006-of-00007.safetensors",
|
415 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.0.weight": "model-00006-of-00007.safetensors",
|
416 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.1.bias": "model-00006-of-00007.safetensors",
|
417 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
418 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
419 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.1.running_var": "model-00006-of-00007.safetensors",
|
420 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c1.1.weight": "model-00006-of-00007.safetensors",
|
421 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.0.bias": "model-00006-of-00007.safetensors",
|
422 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.0.weight": "model-00006-of-00007.safetensors",
|
423 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.1.bias": "model-00006-of-00007.safetensors",
|
424 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
425 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
426 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.1.running_var": "model-00006-of-00007.safetensors",
|
427 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c2.1.weight": "model-00006-of-00007.safetensors",
|
428 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.0.bias": "model-00006-of-00007.safetensors",
|
429 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.0.weight": "model-00006-of-00007.safetensors",
|
430 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.1.bias": "model-00006-of-00007.safetensors",
|
431 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
432 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
433 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.1.running_var": "model-00006-of-00007.safetensors",
|
434 |
+
"model.vision_tower.vision_tower.encoder.s0.0.1.c3.1.weight": "model-00006-of-00007.safetensors",
|
435 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.0.bias": "model-00006-of-00007.safetensors",
|
436 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.0.weight": "model-00006-of-00007.safetensors",
|
437 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.1.bias": "model-00006-of-00007.safetensors",
|
438 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
439 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
440 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.1.running_var": "model-00006-of-00007.safetensors",
|
441 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c1.1.weight": "model-00006-of-00007.safetensors",
|
442 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.0.bias": "model-00006-of-00007.safetensors",
|
443 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.0.weight": "model-00006-of-00007.safetensors",
|
444 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.1.bias": "model-00006-of-00007.safetensors",
|
445 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
446 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
447 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.1.running_var": "model-00006-of-00007.safetensors",
|
448 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c2.1.weight": "model-00006-of-00007.safetensors",
|
449 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.0.bias": "model-00006-of-00007.safetensors",
|
450 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.0.weight": "model-00006-of-00007.safetensors",
|
451 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.1.bias": "model-00006-of-00007.safetensors",
|
452 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
453 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
454 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.1.running_var": "model-00006-of-00007.safetensors",
|
455 |
+
"model.vision_tower.vision_tower.encoder.s0.0.2.c3.1.weight": "model-00006-of-00007.safetensors",
|
456 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.0.bias": "model-00006-of-00007.safetensors",
|
457 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.0.weight": "model-00006-of-00007.safetensors",
|
458 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.1.bias": "model-00006-of-00007.safetensors",
|
459 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
460 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
461 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.1.running_var": "model-00006-of-00007.safetensors",
|
462 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c1.1.weight": "model-00006-of-00007.safetensors",
|
463 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.0.bias": "model-00006-of-00007.safetensors",
|
464 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.0.weight": "model-00006-of-00007.safetensors",
|
465 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.1.bias": "model-00006-of-00007.safetensors",
|
466 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
467 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
468 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.1.running_var": "model-00006-of-00007.safetensors",
|
469 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c2.1.weight": "model-00006-of-00007.safetensors",
|
470 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.0.bias": "model-00006-of-00007.safetensors",
|
471 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.0.weight": "model-00006-of-00007.safetensors",
|
472 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.1.bias": "model-00006-of-00007.safetensors",
|
473 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
474 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
475 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.1.running_var": "model-00006-of-00007.safetensors",
|
476 |
+
"model.vision_tower.vision_tower.encoder.s0.0.3.c3.1.weight": "model-00006-of-00007.safetensors",
|
477 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
478 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
479 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
480 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
481 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
482 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
483 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
484 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
485 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
486 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
487 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
488 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
489 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
490 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
491 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
492 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
493 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
494 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
495 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
496 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
497 |
+
"model.vision_tower.vision_tower.encoder.s1.0.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
498 |
+
"model.vision_tower.vision_tower.encoder.s1.0.gamma": "model-00006-of-00007.safetensors",
|
499 |
+
"model.vision_tower.vision_tower.encoder.s1.0.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
500 |
+
"model.vision_tower.vision_tower.encoder.s1.0.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
501 |
+
"model.vision_tower.vision_tower.encoder.s1.0.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
502 |
+
"model.vision_tower.vision_tower.encoder.s1.0.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
503 |
+
"model.vision_tower.vision_tower.encoder.s1.0.proj.weight": "model-00006-of-00007.safetensors",
|
504 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
505 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
506 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
507 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
508 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
509 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
510 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
511 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
512 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
513 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
514 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
515 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
516 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
517 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
518 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
519 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
520 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
521 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
522 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
523 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
524 |
+
"model.vision_tower.vision_tower.encoder.s1.1.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
525 |
+
"model.vision_tower.vision_tower.encoder.s1.1.gamma": "model-00006-of-00007.safetensors",
|
526 |
+
"model.vision_tower.vision_tower.encoder.s1.1.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
527 |
+
"model.vision_tower.vision_tower.encoder.s1.1.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
528 |
+
"model.vision_tower.vision_tower.encoder.s1.1.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
529 |
+
"model.vision_tower.vision_tower.encoder.s1.1.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
530 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
531 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
532 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
533 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
534 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
535 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
536 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
537 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
538 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
539 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
540 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
541 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
542 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
543 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
544 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
545 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
546 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
547 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
548 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
549 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
550 |
+
"model.vision_tower.vision_tower.encoder.s2.0.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
551 |
+
"model.vision_tower.vision_tower.encoder.s2.0.gamma": "model-00006-of-00007.safetensors",
|
552 |
+
"model.vision_tower.vision_tower.encoder.s2.0.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
553 |
+
"model.vision_tower.vision_tower.encoder.s2.0.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
554 |
+
"model.vision_tower.vision_tower.encoder.s2.0.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
555 |
+
"model.vision_tower.vision_tower.encoder.s2.0.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
556 |
+
"model.vision_tower.vision_tower.encoder.s2.0.proj.weight": "model-00006-of-00007.safetensors",
|
557 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
558 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
559 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
560 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
561 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
562 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
563 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
564 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
565 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
566 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
567 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
568 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
569 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
570 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
571 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
572 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
573 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
574 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
575 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
576 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
577 |
+
"model.vision_tower.vision_tower.encoder.s2.1.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
578 |
+
"model.vision_tower.vision_tower.encoder.s2.1.gamma": "model-00006-of-00007.safetensors",
|
579 |
+
"model.vision_tower.vision_tower.encoder.s2.1.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
580 |
+
"model.vision_tower.vision_tower.encoder.s2.1.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
581 |
+
"model.vision_tower.vision_tower.encoder.s2.1.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
582 |
+
"model.vision_tower.vision_tower.encoder.s2.1.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
583 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
584 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
585 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
586 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
587 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
588 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
589 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
590 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
591 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
592 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
593 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
594 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
595 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
596 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
597 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
598 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
599 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
600 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
601 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
602 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
603 |
+
"model.vision_tower.vision_tower.encoder.s2.2.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
604 |
+
"model.vision_tower.vision_tower.encoder.s2.2.gamma": "model-00006-of-00007.safetensors",
|
605 |
+
"model.vision_tower.vision_tower.encoder.s2.2.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
606 |
+
"model.vision_tower.vision_tower.encoder.s2.2.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
607 |
+
"model.vision_tower.vision_tower.encoder.s2.2.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
608 |
+
"model.vision_tower.vision_tower.encoder.s2.2.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
609 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
610 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
611 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
612 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
613 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
614 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
615 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
616 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
617 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
618 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
619 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
620 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
621 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
622 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
623 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
624 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
625 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
626 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
627 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
628 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
629 |
+
"model.vision_tower.vision_tower.encoder.s3.0.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
630 |
+
"model.vision_tower.vision_tower.encoder.s3.0.gamma": "model-00006-of-00007.safetensors",
|
631 |
+
"model.vision_tower.vision_tower.encoder.s3.0.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
632 |
+
"model.vision_tower.vision_tower.encoder.s3.0.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
633 |
+
"model.vision_tower.vision_tower.encoder.s3.0.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
634 |
+
"model.vision_tower.vision_tower.encoder.s3.0.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
635 |
+
"model.vision_tower.vision_tower.encoder.s3.0.proj.weight": "model-00006-of-00007.safetensors",
|
636 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
637 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
638 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
639 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
640 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
641 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
642 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
643 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
644 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
645 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
646 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
647 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
648 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
649 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
650 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
651 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
652 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
653 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
654 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
655 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
656 |
+
"model.vision_tower.vision_tower.encoder.s3.1.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
657 |
+
"model.vision_tower.vision_tower.encoder.s3.1.gamma": "model-00006-of-00007.safetensors",
|
658 |
+
"model.vision_tower.vision_tower.encoder.s3.1.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
659 |
+
"model.vision_tower.vision_tower.encoder.s3.1.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
660 |
+
"model.vision_tower.vision_tower.encoder.s3.1.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
661 |
+
"model.vision_tower.vision_tower.encoder.s3.1.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
662 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
663 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
664 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
665 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
666 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
667 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
668 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
669 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
670 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
671 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
672 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
673 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
674 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
675 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
676 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
677 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
678 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
679 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
680 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
681 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
682 |
+
"model.vision_tower.vision_tower.encoder.s3.2.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
683 |
+
"model.vision_tower.vision_tower.encoder.s3.2.gamma": "model-00006-of-00007.safetensors",
|
684 |
+
"model.vision_tower.vision_tower.encoder.s3.2.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
685 |
+
"model.vision_tower.vision_tower.encoder.s3.2.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
686 |
+
"model.vision_tower.vision_tower.encoder.s3.2.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
687 |
+
"model.vision_tower.vision_tower.encoder.s3.2.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
688 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
689 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
690 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
691 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
692 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
693 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
694 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
695 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
696 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
697 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
698 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
699 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
700 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
701 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
702 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
703 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
704 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
705 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
706 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
707 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
708 |
+
"model.vision_tower.vision_tower.encoder.s3.3.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
709 |
+
"model.vision_tower.vision_tower.encoder.s3.3.gamma": "model-00006-of-00007.safetensors",
|
710 |
+
"model.vision_tower.vision_tower.encoder.s3.3.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
711 |
+
"model.vision_tower.vision_tower.encoder.s3.3.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
712 |
+
"model.vision_tower.vision_tower.encoder.s3.3.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
713 |
+
"model.vision_tower.vision_tower.encoder.s3.3.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
714 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
715 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
716 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
717 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
718 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
719 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
720 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
721 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
722 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
723 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
724 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
725 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
726 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
727 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
728 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
729 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
730 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
731 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
732 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
733 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
734 |
+
"model.vision_tower.vision_tower.encoder.s3.4.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
735 |
+
"model.vision_tower.vision_tower.encoder.s3.4.gamma": "model-00006-of-00007.safetensors",
|
736 |
+
"model.vision_tower.vision_tower.encoder.s3.4.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
737 |
+
"model.vision_tower.vision_tower.encoder.s3.4.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
738 |
+
"model.vision_tower.vision_tower.encoder.s3.4.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
739 |
+
"model.vision_tower.vision_tower.encoder.s3.4.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
740 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
741 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
742 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
743 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
744 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
745 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
746 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
747 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
748 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
749 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
750 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
751 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
752 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
753 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
754 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
755 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
756 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
757 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
758 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
759 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
760 |
+
"model.vision_tower.vision_tower.encoder.s3.5.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
761 |
+
"model.vision_tower.vision_tower.encoder.s3.5.gamma": "model-00006-of-00007.safetensors",
|
762 |
+
"model.vision_tower.vision_tower.encoder.s3.5.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
763 |
+
"model.vision_tower.vision_tower.encoder.s3.5.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
764 |
+
"model.vision_tower.vision_tower.encoder.s3.5.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
765 |
+
"model.vision_tower.vision_tower.encoder.s3.5.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
766 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
767 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
768 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
769 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
770 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
771 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
772 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
773 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
774 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
775 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
776 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
777 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
778 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
779 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
780 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
781 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
782 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
783 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
784 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
785 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
786 |
+
"model.vision_tower.vision_tower.encoder.s4.0.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
787 |
+
"model.vision_tower.vision_tower.encoder.s4.0.gamma": "model-00006-of-00007.safetensors",
|
788 |
+
"model.vision_tower.vision_tower.encoder.s4.0.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
789 |
+
"model.vision_tower.vision_tower.encoder.s4.0.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
790 |
+
"model.vision_tower.vision_tower.encoder.s4.0.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
791 |
+
"model.vision_tower.vision_tower.encoder.s4.0.mlp.mlp.3.weight": "model-00006-of-00007.safetensors",
|
792 |
+
"model.vision_tower.vision_tower.encoder.s4.0.proj.weight": "model-00006-of-00007.safetensors",
|
793 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.0.bias": "model-00006-of-00007.safetensors",
|
794 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.0.weight": "model-00006-of-00007.safetensors",
|
795 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.1.bias": "model-00006-of-00007.safetensors",
|
796 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
797 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.1.running_mean": "model-00006-of-00007.safetensors",
|
798 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.1.running_var": "model-00006-of-00007.safetensors",
|
799 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c1.1.weight": "model-00006-of-00007.safetensors",
|
800 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.0.bias": "model-00006-of-00007.safetensors",
|
801 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.0.weight": "model-00006-of-00007.safetensors",
|
802 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.1.bias": "model-00006-of-00007.safetensors",
|
803 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
804 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.1.running_mean": "model-00006-of-00007.safetensors",
|
805 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.1.running_var": "model-00006-of-00007.safetensors",
|
806 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c2.1.weight": "model-00006-of-00007.safetensors",
|
807 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.0.bias": "model-00006-of-00007.safetensors",
|
808 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.0.weight": "model-00006-of-00007.safetensors",
|
809 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.1.bias": "model-00006-of-00007.safetensors",
|
810 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.1.num_batches_tracked": "model-00006-of-00007.safetensors",
|
811 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.1.running_mean": "model-00006-of-00007.safetensors",
|
812 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.1.running_var": "model-00006-of-00007.safetensors",
|
813 |
+
"model.vision_tower.vision_tower.encoder.s4.1.dwconv.c3.1.weight": "model-00006-of-00007.safetensors",
|
814 |
+
"model.vision_tower.vision_tower.encoder.s4.1.gamma": "model-00006-of-00007.safetensors",
|
815 |
+
"model.vision_tower.vision_tower.encoder.s4.1.mlp.mlp.0.bias": "model-00006-of-00007.safetensors",
|
816 |
+
"model.vision_tower.vision_tower.encoder.s4.1.mlp.mlp.0.weight": "model-00006-of-00007.safetensors",
|
817 |
+
"model.vision_tower.vision_tower.encoder.s4.1.mlp.mlp.3.bias": "model-00006-of-00007.safetensors",
|
818 |
+
"model.vision_tower.vision_tower.encoder.s4.1.mlp.mlp.3.weight": "model-00006-of-00007.safetensors"
|
819 |
+
}
|
820 |
+
}
|
modeling.py
ADDED
@@ -0,0 +1,1721 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from typing import Any, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import pack, rearrange, repeat, unpack
|
10 |
+
from einops.layers.torch import Rearrange
|
11 |
+
from timm.layers import DropPath, to_3tuple, trunc_normal_
|
12 |
+
from transformers import (
|
13 |
+
AutoConfig,
|
14 |
+
AutoModel,
|
15 |
+
AutoModelForCausalLM,
|
16 |
+
PretrainedConfig,
|
17 |
+
PreTrainedModel,
|
18 |
+
Qwen2Config,
|
19 |
+
Qwen2ForCausalLM,
|
20 |
+
Qwen2Model,
|
21 |
+
)
|
22 |
+
from transformers.generation.utils import GenerateOutput
|
23 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
24 |
+
|
25 |
+
try:
|
26 |
+
import torch.distributed.nn
|
27 |
+
from torch import distributed as dist
|
28 |
+
|
29 |
+
has_distributed = True
|
30 |
+
except ImportError:
|
31 |
+
has_distributed = False
|
32 |
+
|
33 |
+
|
34 |
+
class DEC_CLIPConfig(PretrainedConfig):
|
35 |
+
model_type = "dec_clip"
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
language_model_name_or_path: str = "",
|
40 |
+
local_loss: bool = False,
|
41 |
+
gather_loss: bool = True,
|
42 |
+
input_size: tuple = (256, 256, 128),
|
43 |
+
dim: int = 768,
|
44 |
+
depth: int = 12,
|
45 |
+
hidden_size: int = 512,
|
46 |
+
mlp_depth: int = 2,
|
47 |
+
loss_type: str = "nce",
|
48 |
+
t_prime: float = np.log(1 / 0.07),
|
49 |
+
bias: float = 0.0,
|
50 |
+
efficient_loss: bool = False,
|
51 |
+
**kwargs,
|
52 |
+
):
|
53 |
+
self.language_model_name_or_path = language_model_name_or_path
|
54 |
+
self.input_size = input_size
|
55 |
+
self.dim = dim
|
56 |
+
self.depth = depth
|
57 |
+
self.hidden_size = hidden_size
|
58 |
+
self.mlp_depth = mlp_depth
|
59 |
+
self.local_loss = local_loss
|
60 |
+
self.gather_loss = gather_loss
|
61 |
+
self.loss_type = loss_type
|
62 |
+
self.t_prime = t_prime
|
63 |
+
self.bias = bias
|
64 |
+
self.efficient_loss = efficient_loss
|
65 |
+
super().__init__(**kwargs)
|
66 |
+
|
67 |
+
|
68 |
+
class DEC_CLIP(PreTrainedModel):
|
69 |
+
config_class = DEC_CLIPConfig
|
70 |
+
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__(config)
|
73 |
+
|
74 |
+
self.config = config
|
75 |
+
|
76 |
+
if config.vision_encoder == "vit3d":
|
77 |
+
self.vision_encoder = Vit3D(
|
78 |
+
input_size=config.input_size,
|
79 |
+
dim=config.dim,
|
80 |
+
depth=config.depth,
|
81 |
+
)
|
82 |
+
elif config.vision_encoder == "dcformer":
|
83 |
+
self.vision_encoder = decomp_small(input_size=config.input_size)
|
84 |
+
else:
|
85 |
+
raise ValueError(f"Unexpected vision encoder: {config.vision_encoder}")
|
86 |
+
|
87 |
+
self.language_encoder = AutoModel.from_pretrained(
|
88 |
+
config.language_model_name_or_path
|
89 |
+
)
|
90 |
+
|
91 |
+
self.mm_vision_proj = nn.Linear(
|
92 |
+
self.vision_encoder.channels[-1], config.hidden_size
|
93 |
+
)
|
94 |
+
self.mm_language_proj = nn.Linear(
|
95 |
+
self.language_encoder.config.dim, config.hidden_size
|
96 |
+
)
|
97 |
+
|
98 |
+
self.efficient_loss = config.efficient_loss
|
99 |
+
self.local_loss = config.local_loss
|
100 |
+
self.gather_loss = config.gather_loss
|
101 |
+
self.loss_type = config.loss_type
|
102 |
+
|
103 |
+
if self.loss_type == "sigmoid":
|
104 |
+
self.t_prime = nn.Parameter(torch.tensor(config.t_prime))
|
105 |
+
self.bias = nn.Parameter(torch.tensor(config.bias))
|
106 |
+
else:
|
107 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * config.t_prime)
|
108 |
+
|
109 |
+
def encode_image(self, image):
|
110 |
+
image_feats = self.vision_encoder(image)
|
111 |
+
if isinstance(image_feats, list):
|
112 |
+
image_feats = image_feats[-1]
|
113 |
+
image_feats = image_feats.mean(dim=1)
|
114 |
+
image_feats = self.mm_vision_proj(image_feats)
|
115 |
+
image_feats = F.normalize(image_feats, dim=-1)
|
116 |
+
|
117 |
+
return image_feats
|
118 |
+
|
119 |
+
def encode_text(self, input_id, attention_mask):
|
120 |
+
text_feats = self.language_encoder(input_id, attention_mask=attention_mask)[
|
121 |
+
"last_hidden_state"
|
122 |
+
]
|
123 |
+
text_feats = text_feats[:, 0]
|
124 |
+
text_feats = self.mm_language_proj(text_feats)
|
125 |
+
text_feats = F.normalize(text_feats, dim=-1)
|
126 |
+
|
127 |
+
return text_feats
|
128 |
+
|
129 |
+
def forward(self, images, input_ids, attention_mask, labels, **kwargs):
|
130 |
+
image_features = self.encode_image(images)
|
131 |
+
text_features = self.encode_text(input_ids, attention_mask)
|
132 |
+
|
133 |
+
rank = 0
|
134 |
+
world_size = 1
|
135 |
+
if has_distributed and dist.is_initialized():
|
136 |
+
rank = dist.get_rank()
|
137 |
+
world_size = dist.get_world_size()
|
138 |
+
|
139 |
+
batch_size = image_features.size(0)
|
140 |
+
device = image_features.device
|
141 |
+
if self.loss_type == "sigmoid":
|
142 |
+
if has_distributed and dist.is_initialized():
|
143 |
+
if self.efficient_loss:
|
144 |
+
t = torch.exp(self.t_prime)
|
145 |
+
loss = 0.0
|
146 |
+
|
147 |
+
for target_rank in range(world_size):
|
148 |
+
if rank == target_rank:
|
149 |
+
target_text_features = text_features
|
150 |
+
else:
|
151 |
+
target_text_features = torch.distributed.nn.broadcast(
|
152 |
+
text_features.requires_grad_(), target_rank
|
153 |
+
)
|
154 |
+
|
155 |
+
local_logits_per_image = (
|
156 |
+
image_features @ target_text_features.T
|
157 |
+
) * t + self.bias
|
158 |
+
local_logits_per_text = local_logits_per_image.T
|
159 |
+
|
160 |
+
if rank == target_rank:
|
161 |
+
local_labels = 2 * torch.eye(
|
162 |
+
batch_size, device=device
|
163 |
+
) - torch.ones(batch_size, batch_size, device=device)
|
164 |
+
else:
|
165 |
+
local_labels = -torch.ones(
|
166 |
+
batch_size, batch_size, device=device
|
167 |
+
)
|
168 |
+
|
169 |
+
local_logits = (
|
170 |
+
local_logits_per_image + local_logits_per_text
|
171 |
+
) / 2.0
|
172 |
+
local_loss = -torch.sum(
|
173 |
+
F.logsigmoid(local_labels * local_logits)
|
174 |
+
) / (batch_size * world_size)
|
175 |
+
|
176 |
+
loss += local_loss
|
177 |
+
|
178 |
+
torch.distributed.nn.all_reduce(loss)
|
179 |
+
torch.cuda.synchronize()
|
180 |
+
|
181 |
+
if self.training:
|
182 |
+
logits = 0
|
183 |
+
else:
|
184 |
+
t = torch.exp(self.t_prime)
|
185 |
+
|
186 |
+
all_image_features, all_text_features = gather_features(
|
187 |
+
image_features,
|
188 |
+
text_features,
|
189 |
+
gather_with_grad=True,
|
190 |
+
rank=rank,
|
191 |
+
world_size=world_size,
|
192 |
+
)
|
193 |
+
|
194 |
+
logits_per_image = (
|
195 |
+
all_image_features @ all_text_features.T
|
196 |
+
) * t + self.bias
|
197 |
+
logits_per_text = logits_per_image.T
|
198 |
+
batch_size = all_image_features.size(0)
|
199 |
+
|
200 |
+
labels = 2 * torch.eye(
|
201 |
+
batch_size, device=image_features.device
|
202 |
+
) - torch.ones(batch_size, device=image_features.device)
|
203 |
+
|
204 |
+
logits = (logits_per_image + logits_per_text) / 2.0
|
205 |
+
loss = -torch.sum(F.logsigmoid(labels * logits)) / batch_size
|
206 |
+
|
207 |
+
else:
|
208 |
+
logits_per_image = (
|
209 |
+
image_features @ text_features.T
|
210 |
+
) * self.t_prime + self.bias
|
211 |
+
logits_per_text = logits_per_image.T
|
212 |
+
|
213 |
+
labels = 2 * torch.eye(batch_size, device=device) - torch.ones(
|
214 |
+
batch_size, batch_size, device=device
|
215 |
+
)
|
216 |
+
|
217 |
+
logits = (logits_per_image + logits_per_text) / 2.0
|
218 |
+
loss = -torch.sum(F.logsigmoid(logits * labels))
|
219 |
+
else:
|
220 |
+
all_image_features, all_text_features = gather_features(
|
221 |
+
image_features,
|
222 |
+
text_features,
|
223 |
+
local_loss=self.local_loss,
|
224 |
+
gather_with_grad=True,
|
225 |
+
rank=rank,
|
226 |
+
world_size=world_size,
|
227 |
+
)
|
228 |
+
|
229 |
+
if self.gather_loss:
|
230 |
+
if self.local_loss:
|
231 |
+
logits_per_image = (
|
232 |
+
self.logit_scale * image_features @ all_text_features.T
|
233 |
+
)
|
234 |
+
logits_per_text = (
|
235 |
+
self.logit_scale * text_features @ all_image_features.T
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
logits_per_image = (
|
239 |
+
self.logit_scale * all_image_features @ all_text_features.T
|
240 |
+
)
|
241 |
+
logits_per_text = logits_per_image.T
|
242 |
+
else:
|
243 |
+
logits_per_image = self.logit_scale * image_features @ text_features.T
|
244 |
+
logits_per_text = self.logit_scale * text_features @ image_features.T
|
245 |
+
|
246 |
+
image_loss = F.cross_entropy(logits_per_image, labels)
|
247 |
+
text_loss = F.cross_entropy(logits_per_text, labels)
|
248 |
+
|
249 |
+
loss = (image_loss + text_loss) / 2.0
|
250 |
+
logits = ((logits_per_image + logits_per_text) / 2.0,)
|
251 |
+
|
252 |
+
ret = {
|
253 |
+
"loss": loss,
|
254 |
+
"logits": logits,
|
255 |
+
}
|
256 |
+
|
257 |
+
return ret
|
258 |
+
|
259 |
+
|
260 |
+
def gather_features(
|
261 |
+
image_features,
|
262 |
+
text_features,
|
263 |
+
local_loss=False,
|
264 |
+
gather_with_grad=True,
|
265 |
+
rank=0,
|
266 |
+
world_size=1,
|
267 |
+
):
|
268 |
+
assert (
|
269 |
+
has_distributed
|
270 |
+
), "torch.distributed did not import correctly, please use a PyTorch version with support."
|
271 |
+
|
272 |
+
if not (has_distributed and dist.is_initialized()):
|
273 |
+
return image_features, text_features
|
274 |
+
|
275 |
+
if gather_with_grad:
|
276 |
+
all_image_features = torch.cat(
|
277 |
+
torch.distributed.nn.all_gather(image_features), dim=0
|
278 |
+
)
|
279 |
+
all_text_features = torch.cat(
|
280 |
+
torch.distributed.nn.all_gather(text_features), dim=0
|
281 |
+
)
|
282 |
+
else:
|
283 |
+
gathered_image_features = [
|
284 |
+
torch.zeros_like(image_features) for _ in range(world_size)
|
285 |
+
]
|
286 |
+
gathered_text_features = [
|
287 |
+
torch.zeros_like(text_features) for _ in range(world_size)
|
288 |
+
]
|
289 |
+
dist.all_gather(gathered_image_features, image_features)
|
290 |
+
dist.all_gather(gathered_text_features, text_features)
|
291 |
+
if not local_loss:
|
292 |
+
gathered_image_features[rank] = image_features
|
293 |
+
gathered_text_features[rank] = text_features
|
294 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
295 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
296 |
+
|
297 |
+
return all_image_features, all_text_features
|
298 |
+
|
299 |
+
|
300 |
+
AutoConfig.register("dec_clip", DEC_CLIPConfig)
|
301 |
+
AutoModel.register(DEC_CLIPConfig, DEC_CLIP)
|
302 |
+
|
303 |
+
|
304 |
+
def stem(inp, oup, image_size, downsample=False):
|
305 |
+
stride = 1 if downsample == False else 2
|
306 |
+
return nn.Sequential(
|
307 |
+
nn.Conv3d(inp, oup, 3, stride, 1, bias=False),
|
308 |
+
nn.BatchNorm3d(oup),
|
309 |
+
nn.GELU(),
|
310 |
+
nn.Conv3d(oup, oup, 3, 1, 1, bias=False),
|
311 |
+
nn.BatchNorm3d(oup),
|
312 |
+
nn.GELU(),
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
def DecomposedStem(inp, oup, image_size, kernel_size, downsample=False):
|
317 |
+
return nn.Sequential(
|
318 |
+
DecompConv3D(inp, oup, 7, 4, 1, nn.GELU()),
|
319 |
+
DecompConv3D(oup, oup, 3, 1, 1, nn.GELU()),
|
320 |
+
DecompConv3D(oup, oup, 3, 1, 1, nn.GELU()),
|
321 |
+
DecompConv3D(oup, oup, 3, 1, 1, nn.GELU()),
|
322 |
+
)
|
323 |
+
|
324 |
+
|
325 |
+
class DecompConv3D(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self, in_dim, out_dim, kernel_size, stride=1, groups=1, norm=True, act=None
|
328 |
+
) -> None:
|
329 |
+
super().__init__()
|
330 |
+
self.act = act
|
331 |
+
|
332 |
+
self.c1 = nn.Sequential(
|
333 |
+
nn.Conv3d(
|
334 |
+
in_dim,
|
335 |
+
out_dim,
|
336 |
+
kernel_size=(kernel_size, 1, 1),
|
337 |
+
padding=(kernel_size // 2, 0, 0),
|
338 |
+
stride=stride,
|
339 |
+
groups=groups,
|
340 |
+
),
|
341 |
+
nn.BatchNorm3d(out_dim) if norm else nn.Identity(),
|
342 |
+
)
|
343 |
+
self.c2 = nn.Sequential(
|
344 |
+
nn.Conv3d(
|
345 |
+
in_dim,
|
346 |
+
out_dim,
|
347 |
+
kernel_size=(1, kernel_size, 1),
|
348 |
+
padding=(0, kernel_size // 2, 0),
|
349 |
+
stride=stride,
|
350 |
+
groups=groups,
|
351 |
+
),
|
352 |
+
nn.BatchNorm3d(out_dim) if norm else nn.Identity(),
|
353 |
+
)
|
354 |
+
self.c3 = nn.Sequential(
|
355 |
+
nn.Conv3d(
|
356 |
+
in_dim,
|
357 |
+
out_dim,
|
358 |
+
kernel_size=(1, 1, kernel_size),
|
359 |
+
padding=(0, 0, kernel_size // 2),
|
360 |
+
stride=stride,
|
361 |
+
groups=groups,
|
362 |
+
),
|
363 |
+
nn.BatchNorm3d(out_dim) if norm else nn.Identity(),
|
364 |
+
)
|
365 |
+
|
366 |
+
def forward(self, x):
|
367 |
+
x = self.c1(x) + self.c2(x) + self.c3(x)
|
368 |
+
if self.act is not None:
|
369 |
+
x = self.act(x)
|
370 |
+
return x
|
371 |
+
|
372 |
+
|
373 |
+
class ConvPosEnc(nn.Module):
|
374 |
+
|
375 |
+
def __init__(self, dim, k=3, decompose=False):
|
376 |
+
super().__init__()
|
377 |
+
if decompose:
|
378 |
+
self.proj = DecompConv3D(dim, dim, k, groups=dim, norm=None)
|
379 |
+
else:
|
380 |
+
self.proj = nn.Conv3d(
|
381 |
+
dim, dim, to_3tuple(k), to_3tuple(1), to_3tuple(k // 2), groups=dim
|
382 |
+
)
|
383 |
+
|
384 |
+
def forward(self, x, size):
|
385 |
+
B, N, C = x.shape
|
386 |
+
H, W, T = size
|
387 |
+
assert N == H * W * T
|
388 |
+
feat = rearrange(x, "b (h w t) c -> b c h w t", h=H, w=W, t=T)
|
389 |
+
feat = self.proj(feat)
|
390 |
+
feat = rearrange(feat, "b c h w t -> b (h w t) c ")
|
391 |
+
x = x + feat
|
392 |
+
return x
|
393 |
+
|
394 |
+
|
395 |
+
class MLP(nn.Module):
|
396 |
+
def __init__(self, oup, mlp_dim, dp=0.0):
|
397 |
+
super().__init__()
|
398 |
+
|
399 |
+
self.mlp = nn.Sequential(
|
400 |
+
nn.Linear(oup, mlp_dim),
|
401 |
+
nn.GELU(),
|
402 |
+
nn.Dropout(dp),
|
403 |
+
nn.Linear(mlp_dim, oup),
|
404 |
+
nn.Dropout(dp),
|
405 |
+
)
|
406 |
+
|
407 |
+
def forward(self, x):
|
408 |
+
x = self.mlp(x)
|
409 |
+
return x
|
410 |
+
|
411 |
+
|
412 |
+
class ScaleDotProduct(nn.Module):
|
413 |
+
def __init__(self, scale):
|
414 |
+
super().__init__()
|
415 |
+
self.scale = scale
|
416 |
+
self.softmax = nn.Softmax(dim=-1)
|
417 |
+
|
418 |
+
def forward(self, qkv):
|
419 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
420 |
+
|
421 |
+
q = q * self.scale
|
422 |
+
attn = q @ k.transpose(-2, -1)
|
423 |
+
attn = self.softmax(attn)
|
424 |
+
|
425 |
+
x = (attn @ v).transpose(1, 2)
|
426 |
+
return x
|
427 |
+
|
428 |
+
|
429 |
+
class DecomposedAttention(nn.Module):
|
430 |
+
def __init__(self, oup, head_num):
|
431 |
+
super().__init__()
|
432 |
+
|
433 |
+
self.head_num = head_num
|
434 |
+
scale = (oup // head_num) ** (1 / 2)
|
435 |
+
self.sdp = ScaleDotProduct(scale)
|
436 |
+
self.qkv = nn.Linear(oup, oup * 3, bias=False)
|
437 |
+
self.proj = nn.Linear(oup, oup, bias=False)
|
438 |
+
|
439 |
+
def forward(self, x, size):
|
440 |
+
b, n, c = x.shape
|
441 |
+
h, w, t = size
|
442 |
+
assert n == h * w * t
|
443 |
+
B_, N, C = x.shape
|
444 |
+
qkv = (
|
445 |
+
self.qkv(x)
|
446 |
+
.reshape(B_, N, 3, self.head_num, C // self.head_num)
|
447 |
+
.permute(2, 0, 3, 1, 4)
|
448 |
+
)
|
449 |
+
|
450 |
+
x = rearrange(qkv, "k b nh (h w t) c -> k b c nh h w t", h=h, w=w, t=t)
|
451 |
+
|
452 |
+
x1 = rearrange(x, "k b c nh h w t -> k (b t) nh (h w) c")
|
453 |
+
x2 = rearrange(x, "k b c nh h w t -> k (b w) nh (h t) c")
|
454 |
+
x3 = rearrange(x, "k b c nh h w t -> k (b h) nh (w t) c")
|
455 |
+
|
456 |
+
x1 = self.sdp(x1)
|
457 |
+
x2 = self.sdp(x2)
|
458 |
+
x3 = self.sdp(x3)
|
459 |
+
|
460 |
+
x1 = rearrange(x1, "(b t) (h w) nh c -> b (h w t) (nh c)", h=h, w=w, t=t)
|
461 |
+
x2 = rearrange(x2, "(b w) (h t) nh c -> b (h w t) (nh c)", h=h, w=w, t=t)
|
462 |
+
x3 = rearrange(x3, "(b h) (w t) nh c -> b (h w t) (nh c)", h=h, w=w, t=t)
|
463 |
+
x = self.proj(x1 + x2 + x3)
|
464 |
+
|
465 |
+
return x
|
466 |
+
|
467 |
+
|
468 |
+
class SelfAttention(nn.Module):
|
469 |
+
def __init__(self, oup, head_num):
|
470 |
+
super().__init__()
|
471 |
+
|
472 |
+
self.head_num = head_num
|
473 |
+
scale = (oup // head_num) ** (1 / 2)
|
474 |
+
self.sdp = ScaleDotProduct(scale)
|
475 |
+
self.qkv = nn.Linear(oup, oup * 3, bias=False)
|
476 |
+
self.proj = nn.Linear(oup, oup, bias=False)
|
477 |
+
|
478 |
+
def forward(self, x, size=None):
|
479 |
+
B_, N, C = x.shape
|
480 |
+
qkv = (
|
481 |
+
self.qkv(x)
|
482 |
+
.reshape(B_, N, 3, self.head_num, C // self.head_num)
|
483 |
+
.permute(2, 0, 3, 1, 4)
|
484 |
+
)
|
485 |
+
|
486 |
+
x = self.sdp(qkv).reshape(B_, N, C)
|
487 |
+
x = self.proj(x)
|
488 |
+
return x
|
489 |
+
|
490 |
+
|
491 |
+
class ChannelAttention(nn.Module):
|
492 |
+
def __init__(self, oup, head_num):
|
493 |
+
super().__init__()
|
494 |
+
|
495 |
+
self.head_num = head_num
|
496 |
+
self.scale = (oup // head_num) ** (1 / 2)
|
497 |
+
self.softmax = nn.Softmax(dim=-1)
|
498 |
+
|
499 |
+
self.qkv = nn.Linear(oup, oup * 3, bias=False)
|
500 |
+
self.proj = nn.Linear(oup, oup, bias=False)
|
501 |
+
|
502 |
+
def forward(self, x):
|
503 |
+
B, N, C = x.shape
|
504 |
+
|
505 |
+
qkv = (
|
506 |
+
self.qkv(x)
|
507 |
+
.reshape(B, N, 3, self.head_num, C // self.head_num)
|
508 |
+
.permute(2, 0, 3, 1, 4)
|
509 |
+
)
|
510 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
511 |
+
|
512 |
+
k = k * self.scale
|
513 |
+
attention = k.transpose(-1, -2) @ v
|
514 |
+
attention = self.softmax(attention)
|
515 |
+
x = (attention @ q.transpose(-1, -2)).transpose(-1, -2)
|
516 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
517 |
+
x = self.proj(x)
|
518 |
+
return x
|
519 |
+
|
520 |
+
|
521 |
+
class ChannelBlock(nn.Module):
|
522 |
+
def __init__(self, dim, heads=8):
|
523 |
+
super().__init__()
|
524 |
+
hidden_dim = int(dim * 4)
|
525 |
+
|
526 |
+
self.cpe = nn.ModuleList(
|
527 |
+
[
|
528 |
+
ConvPosEnc(dim=dim, k=3, decompose=True),
|
529 |
+
ConvPosEnc(dim=dim, k=3, decompose=True),
|
530 |
+
]
|
531 |
+
)
|
532 |
+
|
533 |
+
self.attn = ChannelAttention(dim, heads)
|
534 |
+
|
535 |
+
self.layer_norm1 = nn.LayerNorm(dim)
|
536 |
+
|
537 |
+
self.mlp1 = MLP(dim, hidden_dim)
|
538 |
+
self.layer_norm2 = nn.LayerNorm(dim)
|
539 |
+
|
540 |
+
def forward(self, x, size):
|
541 |
+
x = self.cpe[0](x, size)
|
542 |
+
_x = self.layer_norm1(x)
|
543 |
+
|
544 |
+
_x = self.attn(_x)
|
545 |
+
x = x + _x
|
546 |
+
|
547 |
+
x = self.cpe[1](x, size)
|
548 |
+
_x = self.layer_norm2(x)
|
549 |
+
_x = self.mlp1(_x)
|
550 |
+
x = x + _x
|
551 |
+
return x
|
552 |
+
|
553 |
+
|
554 |
+
class SpatialBlock(nn.Module):
|
555 |
+
def __init__(self, dim, heads=8):
|
556 |
+
super().__init__()
|
557 |
+
hidden_dim = int(dim * 4)
|
558 |
+
|
559 |
+
self.cpe = nn.ModuleList(
|
560 |
+
[
|
561 |
+
ConvPosEnc(dim=dim, k=3, decompose=True),
|
562 |
+
ConvPosEnc(dim=dim, k=3, decompose=True),
|
563 |
+
]
|
564 |
+
)
|
565 |
+
|
566 |
+
# self.attn = DecomposedAttention(dim, heads)
|
567 |
+
self.attn = SelfAttention(dim, heads)
|
568 |
+
|
569 |
+
self.layer_norm1 = nn.LayerNorm(dim)
|
570 |
+
|
571 |
+
self.mlp1 = MLP(dim, hidden_dim)
|
572 |
+
self.layer_norm2 = nn.LayerNorm(dim)
|
573 |
+
|
574 |
+
def forward(self, x, size):
|
575 |
+
x = self.cpe[0](x, size)
|
576 |
+
_x = self.layer_norm1(x)
|
577 |
+
|
578 |
+
_x = self.attn(_x, size)
|
579 |
+
x = x + _x
|
580 |
+
|
581 |
+
x = self.cpe[1](x, size)
|
582 |
+
_x = self.layer_norm2(x)
|
583 |
+
_x = self.mlp1(_x)
|
584 |
+
x = x + _x
|
585 |
+
return x
|
586 |
+
|
587 |
+
|
588 |
+
class TransformerBlock(nn.Module):
|
589 |
+
def __init__(
|
590 |
+
self,
|
591 |
+
inp,
|
592 |
+
oup,
|
593 |
+
image_size,
|
594 |
+
kernel_size,
|
595 |
+
heads=8,
|
596 |
+
dim_head=32,
|
597 |
+
downsample=False,
|
598 |
+
dropout=0.0,
|
599 |
+
):
|
600 |
+
super().__init__()
|
601 |
+
hidden_dim = int(inp * 4)
|
602 |
+
|
603 |
+
self.ih, self.iw, self.it = image_size
|
604 |
+
self.downsample = downsample
|
605 |
+
|
606 |
+
if self.downsample:
|
607 |
+
self.pool1 = nn.MaxPool3d(3, 2, 1)
|
608 |
+
# self.pool2 = nn.MaxPool3d(3, 2, 1)
|
609 |
+
self.proj = nn.Conv3d(inp, oup, 1, 1, 0, bias=False)
|
610 |
+
|
611 |
+
self.spatial_attention = SpatialBlock(oup, heads)
|
612 |
+
# self.channel_attention = ChannelBlock(oup, heads)
|
613 |
+
|
614 |
+
def forward(self, x):
|
615 |
+
if self.downsample:
|
616 |
+
x = self.proj(self.pool1(x))
|
617 |
+
# if self.downsample:
|
618 |
+
# x = self.proj(self.pool1(x)) + self.attn(self.pool2(x))
|
619 |
+
|
620 |
+
# x = x.permute(0, 2, 3, 4, 1)
|
621 |
+
h, w, t = x.shape[2], x.shape[3], x.shape[4]
|
622 |
+
size = (h, w, t)
|
623 |
+
x = rearrange(x, "b c h w t -> b (h w t) c ")
|
624 |
+
|
625 |
+
x = self.spatial_attention(x, size)
|
626 |
+
# x = self.channel_attention(x, size)
|
627 |
+
|
628 |
+
x = rearrange(x, "b (h w t) c -> b c h w t", h=h, w=w, t=t)
|
629 |
+
|
630 |
+
return x
|
631 |
+
|
632 |
+
|
633 |
+
class ConvBlock(nn.Module):
|
634 |
+
def __init__(
|
635 |
+
self, inp, oup, image_size, kernel_size=7, downsample=False, expansion=4
|
636 |
+
):
|
637 |
+
super().__init__()
|
638 |
+
self.downsample = downsample
|
639 |
+
stride = 1 if self.downsample == False else 2
|
640 |
+
hidden_dim = int(oup * expansion)
|
641 |
+
drop_path = 0.0
|
642 |
+
layer_scale_init_value = 1e-6
|
643 |
+
if self.downsample:
|
644 |
+
self.pool = nn.MaxPool3d(3, 2, 1)
|
645 |
+
self.proj = nn.Conv3d(inp, oup, 1, 1, 0, bias=False)
|
646 |
+
|
647 |
+
# self.dwconv = nn.Sequential(nn.Conv3d(oup, oup, kernel_size=7, padding=3, groups=oup), nn.BatchNorm3d(oup)) # depthwise conv
|
648 |
+
self.dwconv = DecompConv3D(oup, oup, kernel_size, groups=oup)
|
649 |
+
self.mlp = MLP(oup, hidden_dim)
|
650 |
+
|
651 |
+
self.gamma = (
|
652 |
+
nn.Parameter(layer_scale_init_value * torch.ones((oup)), requires_grad=True)
|
653 |
+
if layer_scale_init_value > 0
|
654 |
+
else None
|
655 |
+
)
|
656 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
657 |
+
|
658 |
+
def forward(self, x):
|
659 |
+
if self.downsample:
|
660 |
+
x = self.proj(self.pool(x))
|
661 |
+
input = x
|
662 |
+
x = self.dwconv(x)
|
663 |
+
x = x.permute(0, 2, 3, 4, 1) # (N, C, H, W, T) -> (N, H, W, T, C)
|
664 |
+
|
665 |
+
x = self.mlp(x)
|
666 |
+
|
667 |
+
if self.gamma is not None:
|
668 |
+
x = self.gamma * x
|
669 |
+
x = x.permute(0, 4, 1, 2, 3) # (N, H, W, C) -> (N, C, H, W)
|
670 |
+
|
671 |
+
x = input + self.drop_path(x)
|
672 |
+
return x
|
673 |
+
|
674 |
+
|
675 |
+
class Encoder(nn.Module):
|
676 |
+
def __init__(
|
677 |
+
self,
|
678 |
+
input_size,
|
679 |
+
in_channels,
|
680 |
+
num_blocks,
|
681 |
+
channels,
|
682 |
+
kernel_sizes=[7, 7, 7, 7],
|
683 |
+
block_types=["C", "C", "C", "C"],
|
684 |
+
):
|
685 |
+
super().__init__()
|
686 |
+
self.dims = channels
|
687 |
+
ih, iw, it = input_size
|
688 |
+
block = {"C": ConvBlock, "T": TransformerBlock}
|
689 |
+
i = 4
|
690 |
+
self.s0 = self._make_layer(
|
691 |
+
DecomposedStem,
|
692 |
+
in_channels,
|
693 |
+
channels[0],
|
694 |
+
num_blocks[0],
|
695 |
+
kernel_sizes[0],
|
696 |
+
(ih // i, iw // i, it // i),
|
697 |
+
)
|
698 |
+
self.s1 = self._make_layer(
|
699 |
+
block[block_types[0]],
|
700 |
+
channels[0],
|
701 |
+
channels[1],
|
702 |
+
num_blocks[1],
|
703 |
+
kernel_sizes[0],
|
704 |
+
(ih // (i * 2**1), iw // (i * 2**1), it // (i * 2**1)),
|
705 |
+
)
|
706 |
+
self.s2 = self._make_layer(
|
707 |
+
block[block_types[1]],
|
708 |
+
channels[1],
|
709 |
+
channels[2],
|
710 |
+
num_blocks[2],
|
711 |
+
kernel_sizes[1],
|
712 |
+
(ih // (i * 2**2), iw // (i * 2**2), it // (i * 2**2)),
|
713 |
+
)
|
714 |
+
self.s3 = self._make_layer(
|
715 |
+
block[block_types[2]],
|
716 |
+
channels[2],
|
717 |
+
channels[3],
|
718 |
+
num_blocks[3],
|
719 |
+
kernel_sizes[2],
|
720 |
+
(ih // (i * 2**3), iw // (i * 2**3), it // (i * 2**3)),
|
721 |
+
)
|
722 |
+
self.s4 = self._make_layer(
|
723 |
+
block[block_types[3]],
|
724 |
+
channels[3],
|
725 |
+
channels[4],
|
726 |
+
num_blocks[4],
|
727 |
+
kernel_sizes[3],
|
728 |
+
(ih // (i * 2**4), iw // (i * 2**4), it // (i * 2**4)),
|
729 |
+
)
|
730 |
+
|
731 |
+
def forward(self, x):
|
732 |
+
hidden_states = []
|
733 |
+
|
734 |
+
x = x.permute(0, 1, 3, 4, 2)
|
735 |
+
|
736 |
+
for i in range(5):
|
737 |
+
if hasattr(self, "s" + str(i)):
|
738 |
+
x = getattr(self, "s" + str(i))(x)
|
739 |
+
hidden_states.append(x)
|
740 |
+
|
741 |
+
return hidden_states
|
742 |
+
|
743 |
+
def _make_layer(self, block, inp, oup, depth, kernel_size, image_size):
|
744 |
+
layers = nn.ModuleList([])
|
745 |
+
for i in range(depth):
|
746 |
+
if i == 0:
|
747 |
+
layers.append(block(inp, oup, image_size, kernel_size, downsample=True))
|
748 |
+
else:
|
749 |
+
layers.append(block(oup, oup, image_size, kernel_size))
|
750 |
+
return nn.Sequential(*layers)
|
751 |
+
|
752 |
+
|
753 |
+
class DecompModel(nn.Module):
|
754 |
+
def __init__(
|
755 |
+
self,
|
756 |
+
input_size=(512, 512, 256),
|
757 |
+
in_channels=1,
|
758 |
+
num_blocks=[2, 2, 3, 5, 2],
|
759 |
+
channels=[64, 96, 192, 384, 768],
|
760 |
+
# kernel_sizes=[7, 7, 7, 7],
|
761 |
+
kernel_sizes=[13, 11, 9, 7],
|
762 |
+
block_types=["C", "C", "C", "C"],
|
763 |
+
codebook_size=8192,
|
764 |
+
):
|
765 |
+
super().__init__()
|
766 |
+
self.channels = channels
|
767 |
+
self.encoder = Encoder(
|
768 |
+
input_size, in_channels, num_blocks, channels, kernel_sizes, block_types
|
769 |
+
)
|
770 |
+
# self.vq = VectorQuantize(dim = channels[-1], codebook_size = codebook_size, use_cosine_sim = True)
|
771 |
+
|
772 |
+
def forward(self, video, mask=None, device="cuda"):
|
773 |
+
hidden_states = self.encoder(video)
|
774 |
+
# tokens = rearrange(tokens, "b d h w t -> b t h w d")
|
775 |
+
# shape = tokens.shape
|
776 |
+
# *_, h, w, _ = shape
|
777 |
+
# quantize
|
778 |
+
|
779 |
+
# tokens, _ = pack([tokens], "b * d")
|
780 |
+
|
781 |
+
for i in range(len(hidden_states)):
|
782 |
+
hidden_states[i] = rearrange(hidden_states[i], "b d h w t -> b t h w d")
|
783 |
+
hidden_states[i], _ = pack([hidden_states[i]], "b * d")
|
784 |
+
|
785 |
+
# vq_mask = None
|
786 |
+
|
787 |
+
# tokens, _, _ = self.vq(tokens, mask = vq_mask)
|
788 |
+
|
789 |
+
# tokens = rearrange(tokens, 'b (t h w) d -> b t h w d', h = h, w = w)
|
790 |
+
|
791 |
+
return hidden_states
|
792 |
+
|
793 |
+
|
794 |
+
def decomp_nano(
|
795 |
+
input_size=(512, 512, 256),
|
796 |
+
# input_size=(256, 256, 128),
|
797 |
+
):
|
798 |
+
|
799 |
+
model = DecompModel(
|
800 |
+
input_size=input_size,
|
801 |
+
num_blocks=[1, 1, 1, 1, 1],
|
802 |
+
channels=[32, 32, 64, 128, 256],
|
803 |
+
)
|
804 |
+
return model
|
805 |
+
|
806 |
+
|
807 |
+
def decomp_naive(
|
808 |
+
input_size=(512, 512, 256),
|
809 |
+
# input_size=(256, 256, 128),
|
810 |
+
):
|
811 |
+
|
812 |
+
model = DecompModel(
|
813 |
+
input_size=input_size,
|
814 |
+
num_blocks=[1, 2, 2, 2, 2],
|
815 |
+
# channels = [64, 64, 128, 256, 512]
|
816 |
+
channels=[32, 64, 128, 256, 512],
|
817 |
+
)
|
818 |
+
return model
|
819 |
+
|
820 |
+
|
821 |
+
def decomp_tiny(
|
822 |
+
input_size=(512, 512, 256),
|
823 |
+
):
|
824 |
+
|
825 |
+
model = DecompModel(
|
826 |
+
input_size=input_size,
|
827 |
+
num_blocks=[1, 2, 3, 3, 2],
|
828 |
+
# channels = [64, 64, 128, 256, 512]
|
829 |
+
channels=[64, 96, 192, 384, 768],
|
830 |
+
)
|
831 |
+
return model
|
832 |
+
|
833 |
+
|
834 |
+
def decomp_small(
|
835 |
+
input_size=(512, 512, 256),
|
836 |
+
):
|
837 |
+
|
838 |
+
model = DecompModel(
|
839 |
+
input_size=input_size,
|
840 |
+
num_blocks=[1, 2, 3, 6, 2],
|
841 |
+
channels=[64, 96, 192, 384, 768],
|
842 |
+
)
|
843 |
+
return model
|
844 |
+
|
845 |
+
|
846 |
+
def decomp_base(
|
847 |
+
input_size=(512, 512, 256),
|
848 |
+
):
|
849 |
+
|
850 |
+
model = DecompModel(
|
851 |
+
input_size=input_size,
|
852 |
+
num_blocks=[1, 2, 6, 6, 2],
|
853 |
+
channels=[64, 128, 256, 512, 1024],
|
854 |
+
)
|
855 |
+
return model
|
856 |
+
|
857 |
+
|
858 |
+
def decomp_large(
|
859 |
+
input_size=(512, 512, 256),
|
860 |
+
):
|
861 |
+
|
862 |
+
model = DecompModel(
|
863 |
+
input_size=input_size,
|
864 |
+
num_blocks=[1, 2, 6, 12, 2],
|
865 |
+
# channels=[64, 192, 384, 768, 1536],
|
866 |
+
channels=[64, 256, 512, 1024, 2048],
|
867 |
+
)
|
868 |
+
return model
|
869 |
+
|
870 |
+
|
871 |
+
class FeedForward(nn.Module):
|
872 |
+
def __init__(self, dim, hidden_dim, dropout=0.0):
|
873 |
+
super().__init__()
|
874 |
+
self.net = nn.Sequential(
|
875 |
+
nn.LayerNorm(dim),
|
876 |
+
nn.Linear(dim, hidden_dim),
|
877 |
+
nn.GELU(),
|
878 |
+
nn.Dropout(dropout),
|
879 |
+
nn.Linear(hidden_dim, dim),
|
880 |
+
nn.Dropout(dropout),
|
881 |
+
)
|
882 |
+
|
883 |
+
def forward(self, x):
|
884 |
+
return self.net(x)
|
885 |
+
|
886 |
+
|
887 |
+
class Attention(nn.Module):
|
888 |
+
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
|
889 |
+
super().__init__()
|
890 |
+
inner_dim = dim_head * heads
|
891 |
+
project_out = not (heads == 1 and dim_head == dim)
|
892 |
+
|
893 |
+
self.heads = heads
|
894 |
+
self.scale = dim_head**-0.5
|
895 |
+
|
896 |
+
self.norm = nn.LayerNorm(dim)
|
897 |
+
self.attend = nn.Softmax(dim=-1)
|
898 |
+
self.dropout = nn.Dropout(dropout)
|
899 |
+
|
900 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
901 |
+
|
902 |
+
self.to_out = (
|
903 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
904 |
+
if project_out
|
905 |
+
else nn.Identity()
|
906 |
+
)
|
907 |
+
|
908 |
+
def forward(self, x):
|
909 |
+
x = self.norm(x)
|
910 |
+
qkv = self.to_qkv(x).chunk(3, dim=-1)
|
911 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)
|
912 |
+
|
913 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
914 |
+
|
915 |
+
attn = self.attend(dots)
|
916 |
+
attn = self.dropout(attn)
|
917 |
+
|
918 |
+
out = torch.matmul(attn, v)
|
919 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
920 |
+
return self.to_out(out)
|
921 |
+
|
922 |
+
|
923 |
+
class Transformer(nn.Module):
|
924 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0):
|
925 |
+
super().__init__()
|
926 |
+
self.layers = nn.ModuleList([])
|
927 |
+
for _ in range(depth):
|
928 |
+
self.layers.append(
|
929 |
+
nn.ModuleList(
|
930 |
+
[
|
931 |
+
Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
|
932 |
+
FeedForward(dim, mlp_dim, dropout=dropout),
|
933 |
+
]
|
934 |
+
)
|
935 |
+
)
|
936 |
+
|
937 |
+
def forward(self, x):
|
938 |
+
for attn, ff in self.layers:
|
939 |
+
x = attn(x) + x
|
940 |
+
x = ff(x) + x
|
941 |
+
return x
|
942 |
+
|
943 |
+
|
944 |
+
class ViTEncoder(nn.Module):
|
945 |
+
def __init__(
|
946 |
+
self,
|
947 |
+
image_size=[512, 512, 256],
|
948 |
+
patch_size=16,
|
949 |
+
dim=512,
|
950 |
+
depth=8,
|
951 |
+
heads=8,
|
952 |
+
mlp_dim=4,
|
953 |
+
channels=1,
|
954 |
+
dim_head=64,
|
955 |
+
dropout=0.0,
|
956 |
+
emb_dropout=0.0,
|
957 |
+
):
|
958 |
+
super().__init__()
|
959 |
+
h, w, t = image_size[0], image_size[1], image_size[2]
|
960 |
+
|
961 |
+
self.vit_img_dim = [i // patch_size for i in image_size]
|
962 |
+
num_patches = (h // patch_size) * (w // patch_size) * (t // patch_size)
|
963 |
+
|
964 |
+
patch_dim = channels * patch_size * patch_size * patch_size
|
965 |
+
|
966 |
+
self.to_patch_embedding = nn.Sequential(
|
967 |
+
Rearrange(
|
968 |
+
"b c (h p1) (w p2) (t p3) -> b (h w t) (p1 p2 p3 c)",
|
969 |
+
p1=patch_size,
|
970 |
+
p2=patch_size,
|
971 |
+
p3=patch_size,
|
972 |
+
),
|
973 |
+
nn.LayerNorm(patch_dim),
|
974 |
+
nn.Linear(patch_dim, dim),
|
975 |
+
nn.LayerNorm(dim),
|
976 |
+
)
|
977 |
+
|
978 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
979 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
980 |
+
self.dropout = nn.Dropout(emb_dropout)
|
981 |
+
|
982 |
+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
983 |
+
|
984 |
+
def forward(self, x):
|
985 |
+
x = x.permute(0, 1, 3, 4, 2)
|
986 |
+
|
987 |
+
x = self.to_patch_embedding(x)
|
988 |
+
b, n, _ = x.shape
|
989 |
+
|
990 |
+
cls_tokens = repeat(self.cls_token, "1 1 d -> b 1 d", b=b)
|
991 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
992 |
+
x += self.pos_embedding[:, : (n + 1)]
|
993 |
+
x = self.dropout(x)
|
994 |
+
|
995 |
+
x = self.transformer(x)
|
996 |
+
x = x[:, 1:, :]
|
997 |
+
x = rearrange(
|
998 |
+
x,
|
999 |
+
"b (x y z) c -> b c x y z",
|
1000 |
+
x=self.vit_img_dim[0],
|
1001 |
+
y=self.vit_img_dim[1],
|
1002 |
+
z=self.vit_img_dim[2],
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
return x
|
1006 |
+
|
1007 |
+
|
1008 |
+
class Vit3D(nn.Module):
|
1009 |
+
def __init__(self, input_size=[512, 512, 256], patch_size=32, dim=512, depth=8):
|
1010 |
+
super().__init__()
|
1011 |
+
|
1012 |
+
self.encoder = ViTEncoder(input_size, patch_size, dim, depth)
|
1013 |
+
|
1014 |
+
# self.vq = VectorQuantize(dim = dim, codebook_size = 8192, use_cosine_sim = True)
|
1015 |
+
|
1016 |
+
def forward(self, video, mask=None, device="cuda"):
|
1017 |
+
tokens = self.encoder(video)
|
1018 |
+
tokens = rearrange(tokens, "b d h w t -> b t h w d")
|
1019 |
+
shape = tokens.shape
|
1020 |
+
*_, h, w, _ = shape
|
1021 |
+
# quantize
|
1022 |
+
tokens, _ = pack([tokens], "b * d")
|
1023 |
+
# vq_mask = None
|
1024 |
+
# tokens, _, _ = self.vq(tokens, mask = vq_mask)
|
1025 |
+
# tokens = rearrange(tokens, 'b (t h w) d -> b t h w d', h = h, w = w)
|
1026 |
+
|
1027 |
+
return tokens
|
1028 |
+
|
1029 |
+
|
1030 |
+
def build_vision_tower(config, **kwargs):
|
1031 |
+
return VisionTower(config)
|
1032 |
+
|
1033 |
+
|
1034 |
+
class VisionTower(nn.Module):
|
1035 |
+
def __init__(self, config):
|
1036 |
+
super().__init__()
|
1037 |
+
|
1038 |
+
self.config = config
|
1039 |
+
self.select_layer = config.vision_select_layer
|
1040 |
+
self.select_feature = config.vision_select_feature
|
1041 |
+
self.hidden_size = config.dim
|
1042 |
+
|
1043 |
+
if config.vision_tower == "vit3d":
|
1044 |
+
self.vision_tower = Vit3D(
|
1045 |
+
input_size=config.input_size,
|
1046 |
+
dim=config.dim,
|
1047 |
+
depth=config.depth,
|
1048 |
+
)
|
1049 |
+
elif config.vision_tower == "dcformer":
|
1050 |
+
self.vision_tower = decomp_small(
|
1051 |
+
input_size=config.input_size,
|
1052 |
+
)
|
1053 |
+
self.low_input_size = self.vision_tower.channels[-2]
|
1054 |
+
self.high_input_size = self.vision_tower.channels[-1]
|
1055 |
+
else:
|
1056 |
+
raise ValueError(f"Unexpected vision tower: {config.vision_tower}")
|
1057 |
+
|
1058 |
+
def forward(self, images):
|
1059 |
+
hidden_states = self.vision_tower(images)
|
1060 |
+
if self.select_layer == 0:
|
1061 |
+
image_features = hidden_states
|
1062 |
+
elif self.select_layer < 0:
|
1063 |
+
image_features = hidden_states[self.select_layer :]
|
1064 |
+
else:
|
1065 |
+
raise ValueError(f"Unexpected select layer: {self.select_layer}")
|
1066 |
+
|
1067 |
+
if self.select_feature == "patch":
|
1068 |
+
image_features = image_features[:, 1:]
|
1069 |
+
elif self.select_feature == "cls_patch":
|
1070 |
+
image_features = image_features
|
1071 |
+
else:
|
1072 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
1073 |
+
|
1074 |
+
return image_features
|
1075 |
+
|
1076 |
+
@property
|
1077 |
+
def dtype(self):
|
1078 |
+
return self.vision_tower.dtype
|
1079 |
+
|
1080 |
+
@property
|
1081 |
+
def device(self):
|
1082 |
+
return self.vision_tower.device
|
1083 |
+
|
1084 |
+
|
1085 |
+
def readable_params(num):
|
1086 |
+
magnitude = 0
|
1087 |
+
while abs(num) >= 1000:
|
1088 |
+
magnitude += 1
|
1089 |
+
num /= 1000.0
|
1090 |
+
return "%.2f%s" % (num, ["", "K", "M", "G", "T", "P"][magnitude])
|
1091 |
+
|
1092 |
+
|
1093 |
+
class MLPLayer(nn.Module):
|
1094 |
+
def __init__(self, embed_dim, scale=4, *args, **kwargs):
|
1095 |
+
super().__init__(*args, **kwargs)
|
1096 |
+
self.linear1 = nn.Linear(embed_dim, embed_dim * scale)
|
1097 |
+
self.linear2 = nn.Linear(embed_dim * scale, embed_dim)
|
1098 |
+
self.act = nn.GELU()
|
1099 |
+
|
1100 |
+
def forward(self, x):
|
1101 |
+
x = self.linear1(x)
|
1102 |
+
x = self.act(x)
|
1103 |
+
x = self.linear2(x)
|
1104 |
+
return x
|
1105 |
+
|
1106 |
+
|
1107 |
+
class MultiHeadSelfAttention(nn.Module):
|
1108 |
+
def __init__(
|
1109 |
+
self,
|
1110 |
+
embed_dim,
|
1111 |
+
output_dim,
|
1112 |
+
num_heads=8,
|
1113 |
+
proj_out_num=32,
|
1114 |
+
):
|
1115 |
+
super(MultiHeadSelfAttention, self).__init__()
|
1116 |
+
self.embed_dim = embed_dim
|
1117 |
+
self.num_heads = num_heads
|
1118 |
+
self.head_dim = embed_dim // num_heads
|
1119 |
+
self.proj_out_num = proj_out_num
|
1120 |
+
self.mlp = MLPLayer(embed_dim)
|
1121 |
+
|
1122 |
+
assert (
|
1123 |
+
self.head_dim * num_heads == embed_dim
|
1124 |
+
), "embed_dim must be divisible by num_heads"
|
1125 |
+
|
1126 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
1127 |
+
|
1128 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
1129 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
1130 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
1131 |
+
|
1132 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
1133 |
+
|
1134 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
1135 |
+
self.act = nn.GELU()
|
1136 |
+
self.out_layer = nn.Linear(embed_dim, output_dim)
|
1137 |
+
|
1138 |
+
self.scale = math.sqrt(self.head_dim)
|
1139 |
+
|
1140 |
+
def forward(self, x):
|
1141 |
+
batch_size, seq_len, _ = x.size()
|
1142 |
+
|
1143 |
+
x = self.norm1(x)
|
1144 |
+
|
1145 |
+
q = (
|
1146 |
+
self.q_proj(x)
|
1147 |
+
.reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
1148 |
+
.transpose(1, 2)
|
1149 |
+
)
|
1150 |
+
k = (
|
1151 |
+
self.k_proj(x)
|
1152 |
+
.reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
1153 |
+
.transpose(1, 2)
|
1154 |
+
)
|
1155 |
+
v = (
|
1156 |
+
self.v_proj(x)
|
1157 |
+
.reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
1158 |
+
.transpose(1, 2)
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale
|
1162 |
+
|
1163 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
1164 |
+
|
1165 |
+
attn_output = torch.matmul(attn_weights, v)
|
1166 |
+
|
1167 |
+
attn_output = attn_output.transpose(1, 2).reshape(
|
1168 |
+
batch_size, seq_len, self.embed_dim
|
1169 |
+
)
|
1170 |
+
output = self.out_proj(attn_output)
|
1171 |
+
|
1172 |
+
output = self.norm2(output)
|
1173 |
+
|
1174 |
+
output = self.mlp(output)
|
1175 |
+
|
1176 |
+
output = self.act(output)
|
1177 |
+
output = self.out_layer(output)
|
1178 |
+
|
1179 |
+
return output
|
1180 |
+
|
1181 |
+
|
1182 |
+
class MultiLayerPerceptron(nn.Module):
|
1183 |
+
def __init__(self, hidden_size, depth):
|
1184 |
+
super().__init__()
|
1185 |
+
self.mlp = nn.Sequential(
|
1186 |
+
nn.Linear(hidden_size, hidden_size),
|
1187 |
+
*[
|
1188 |
+
nn.Sequential(nn.GELU(), nn.Linear(hidden_size, hidden_size))
|
1189 |
+
for _ in range(depth - 1)
|
1190 |
+
],
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
def forward(self, x):
|
1194 |
+
return self.mlp(x)
|
1195 |
+
|
1196 |
+
|
1197 |
+
class MultiModalProjector(nn.Module):
|
1198 |
+
def __init__(self, input_size, output_size, mlp_depth, proj_out_num=256):
|
1199 |
+
super().__init__()
|
1200 |
+
self.proj_out_num = proj_out_num
|
1201 |
+
self.mm_projector = nn.Sequential(
|
1202 |
+
nn.Linear(input_size, output_size),
|
1203 |
+
*[
|
1204 |
+
nn.Sequential(
|
1205 |
+
nn.GELU(),
|
1206 |
+
nn.Linear(output_size, output_size),
|
1207 |
+
)
|
1208 |
+
for _ in range(mlp_depth - 1)
|
1209 |
+
],
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def forward(self, x):
|
1213 |
+
return self.mm_projector(x)
|
1214 |
+
|
1215 |
+
|
1216 |
+
class LowHighHybridMLP(nn.Module):
|
1217 |
+
def __init__(
|
1218 |
+
self, low_input_size, high_input_size, output_size, mlp_depth, proj_out_num=288
|
1219 |
+
):
|
1220 |
+
super().__init__()
|
1221 |
+
self.proj_out_num = proj_out_num
|
1222 |
+
self.low_up_mlp = nn.Linear(low_input_size, output_size)
|
1223 |
+
self.high_up_mlp = nn.Linear(high_input_size, output_size)
|
1224 |
+
modules = []
|
1225 |
+
for _ in range(1, mlp_depth):
|
1226 |
+
modules.append(nn.GELU())
|
1227 |
+
modules.append(nn.Linear(output_size, output_size))
|
1228 |
+
self.mm_projector = nn.Sequential(*modules)
|
1229 |
+
|
1230 |
+
def forward(self, x):
|
1231 |
+
low_x, high_x = x
|
1232 |
+
|
1233 |
+
low_x = self.low_up_mlp(low_x)
|
1234 |
+
high_x = self.high_up_mlp(high_x)
|
1235 |
+
x = torch.cat([low_x, high_x], dim=1)
|
1236 |
+
|
1237 |
+
x = self.mm_projector(x)
|
1238 |
+
|
1239 |
+
return x
|
1240 |
+
|
1241 |
+
|
1242 |
+
class MixerLayer(nn.Module):
|
1243 |
+
def __init__(self, input_size, output_size, mlp_depth=2):
|
1244 |
+
super().__init__()
|
1245 |
+
self.ln1 = nn.LayerNorm(input_size[1])
|
1246 |
+
self.ln2 = nn.LayerNorm(input_size[1])
|
1247 |
+
|
1248 |
+
self.mlp1 = MultiModalProjector(
|
1249 |
+
input_size=input_size[0], output_size=output_size[0], mlp_depth=mlp_depth
|
1250 |
+
)
|
1251 |
+
self.mlp2 = MultiModalProjector(
|
1252 |
+
input_size=input_size[1], output_size=output_size[1], mlp_depth=mlp_depth
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
def forward(self, x):
|
1256 |
+
x = self.ln1(x)
|
1257 |
+
x = rearrange(x, "b n d -> b d n")
|
1258 |
+
x = self.mlp1(x)
|
1259 |
+
x = rearrange(x, "b d n -> b n d")
|
1260 |
+
x = self.ln2(x)
|
1261 |
+
x = self.mlp2(x)
|
1262 |
+
|
1263 |
+
return x
|
1264 |
+
|
1265 |
+
|
1266 |
+
class MixerLowHighHybridMLP(nn.Module):
|
1267 |
+
def __init__(
|
1268 |
+
self,
|
1269 |
+
low_input_size: tuple = (256, 384),
|
1270 |
+
low_output_size: list = [192, 128],
|
1271 |
+
high_input_size: tuple = (32, 768),
|
1272 |
+
high_output_size: list = [64, 128],
|
1273 |
+
output_dim=3584,
|
1274 |
+
depth=2,
|
1275 |
+
mlp_depth=2,
|
1276 |
+
proj_out_num=256,
|
1277 |
+
):
|
1278 |
+
assert (
|
1279 |
+
len(low_output_size) == len(high_output_size) == depth
|
1280 |
+
), "Output size must be same for both low and high input"
|
1281 |
+
assert output_dim % (2**depth) == 0, "Output dim must be divisible by 2**depth"
|
1282 |
+
|
1283 |
+
super().__init__()
|
1284 |
+
|
1285 |
+
self.proj_out_num = proj_out_num
|
1286 |
+
|
1287 |
+
self.low_mixer = nn.ModuleList(
|
1288 |
+
[
|
1289 |
+
MixerLayer(
|
1290 |
+
input_size=(
|
1291 |
+
(low_output_size[i - 1], output_dim // (2 ** (depth - i)))
|
1292 |
+
if i > 0
|
1293 |
+
else low_input_size
|
1294 |
+
),
|
1295 |
+
output_size=(
|
1296 |
+
low_output_size[i],
|
1297 |
+
output_dim // (2 ** (depth - i - 1)),
|
1298 |
+
),
|
1299 |
+
mlp_depth=mlp_depth,
|
1300 |
+
)
|
1301 |
+
for i in range(depth)
|
1302 |
+
]
|
1303 |
+
)
|
1304 |
+
self.high_mixer = nn.ModuleList(
|
1305 |
+
[
|
1306 |
+
MixerLayer(
|
1307 |
+
input_size=(
|
1308 |
+
(high_output_size[i - 1], output_dim // (2 ** (depth - i)))
|
1309 |
+
if i > 0
|
1310 |
+
else high_input_size
|
1311 |
+
),
|
1312 |
+
output_size=(
|
1313 |
+
high_output_size[i],
|
1314 |
+
output_dim // (2 ** (depth - i - 1)),
|
1315 |
+
),
|
1316 |
+
mlp_depth=mlp_depth,
|
1317 |
+
)
|
1318 |
+
for i in range(depth)
|
1319 |
+
]
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
def forward(self, x):
|
1323 |
+
low_x, high_x = x
|
1324 |
+
for low_layer, high_layer in zip(self.low_mixer, self.high_mixer):
|
1325 |
+
low_x = low_layer(low_x)
|
1326 |
+
high_x = high_layer(high_x)
|
1327 |
+
x = torch.cat([low_x, high_x], dim=1)
|
1328 |
+
|
1329 |
+
return x
|
1330 |
+
|
1331 |
+
|
1332 |
+
class IdentityMap(nn.Module):
|
1333 |
+
def __init__(self):
|
1334 |
+
super().__init__()
|
1335 |
+
|
1336 |
+
def forward(self, x, *args, **kwargs):
|
1337 |
+
return x
|
1338 |
+
|
1339 |
+
@property
|
1340 |
+
def config(self):
|
1341 |
+
return {"mm_projector_type": "identity"}
|
1342 |
+
|
1343 |
+
|
1344 |
+
def build_mm_projector(config, delay_load=False, **kwargs):
|
1345 |
+
projector_type = getattr(config, "mm_projector_type", "linear")
|
1346 |
+
|
1347 |
+
if projector_type == "linear":
|
1348 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
1349 |
+
elif projector_type == "mlp":
|
1350 |
+
return MultiModalProjector(
|
1351 |
+
input_size=config.mm_hidden_size,
|
1352 |
+
output_size=config.hidden_size,
|
1353 |
+
mlp_depth=config.mm_mlp_depth,
|
1354 |
+
proj_out_num=config.proj_out_num,
|
1355 |
+
)
|
1356 |
+
elif projector_type == "low_high_mlp":
|
1357 |
+
return LowHighHybridMLP(
|
1358 |
+
low_input_size=config.low_input_size,
|
1359 |
+
high_input_size=config.high_input_size,
|
1360 |
+
output_size=config.hidden_size,
|
1361 |
+
mlp_depth=config.mm_mlp_depth,
|
1362 |
+
proj_out_num=config.proj_out_num,
|
1363 |
+
)
|
1364 |
+
elif projector_type == "mixer":
|
1365 |
+
return MixerLowHighHybridMLP(
|
1366 |
+
low_input_size=config.low_input_size,
|
1367 |
+
low_output_size=config.low_output_size,
|
1368 |
+
high_input_size=config.high_input_size,
|
1369 |
+
high_output_size=config.high_output_size,
|
1370 |
+
output_dim=config.hidden_size,
|
1371 |
+
depth=len(config.low_output_size),
|
1372 |
+
mlp_depth=config.mm_mlp_depth,
|
1373 |
+
proj_out_num=config.proj_out_num,
|
1374 |
+
)
|
1375 |
+
elif projector_type == "mhsa":
|
1376 |
+
return MultiHeadSelfAttention(
|
1377 |
+
embed_dim=config.mm_hidden_size,
|
1378 |
+
output_dim=config.hidden_size,
|
1379 |
+
num_heads=hasattr(config, "num_heads") and config.num_heads or 8,
|
1380 |
+
proj_out_num=config.proj_out_num,
|
1381 |
+
)
|
1382 |
+
elif projector_type == "identity":
|
1383 |
+
return IdentityMap()
|
1384 |
+
else:
|
1385 |
+
raise ValueError(f"Unknown projector type: {projector_type}")
|
1386 |
+
|
1387 |
+
|
1388 |
+
class VLMMetaModel:
|
1389 |
+
|
1390 |
+
def __init__(self, config):
|
1391 |
+
super(VLMMetaModel, self).__init__(config)
|
1392 |
+
|
1393 |
+
if hasattr(config, "vision_tower"):
|
1394 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
1395 |
+
self.mm_projector = build_mm_projector(config)
|
1396 |
+
|
1397 |
+
def get_vision_tower(self):
|
1398 |
+
vision_tower = getattr(self, "vision_tower", None)
|
1399 |
+
if type(vision_tower) is list:
|
1400 |
+
vision_tower = vision_tower[0]
|
1401 |
+
return vision_tower
|
1402 |
+
|
1403 |
+
def initialize_vision_modules(self, model_args):
|
1404 |
+
self.config.input_size = model_args.input_size
|
1405 |
+
self.config.patch_size = model_args.patch_size
|
1406 |
+
self.config.dim = model_args.dim
|
1407 |
+
self.config.depth = model_args.depth
|
1408 |
+
|
1409 |
+
self.config.vision_tower = model_args.vision_tower
|
1410 |
+
self.config.vision_select_layer = model_args.vision_select_layer
|
1411 |
+
self.config.vision_select_feature = model_args.vision_select_feature
|
1412 |
+
|
1413 |
+
self.config.mm_projector_type = model_args.mm_projector_type
|
1414 |
+
self.config.mm_mlp_depth = model_args.mm_mlp_depth
|
1415 |
+
self.config.proj_out_num = model_args.proj_out_num
|
1416 |
+
|
1417 |
+
# vision tower
|
1418 |
+
if self.get_vision_tower() is None:
|
1419 |
+
self.vision_tower = build_vision_tower(self.config)
|
1420 |
+
self.vision_tower.requires_grad_(not model_args.freeze_vision_tower)
|
1421 |
+
|
1422 |
+
if self.config.vision_tower == "hybrid":
|
1423 |
+
self.config.low_input_size = self.vision_tower.low_input_size
|
1424 |
+
self.config.high_input_size = self.vision_tower.high_input_size
|
1425 |
+
elif self.config.mm_projector_type == "mixer":
|
1426 |
+
self.config.low_output_size = model_args.low_output_size
|
1427 |
+
self.config.high_output_size = model_args.high_output_size
|
1428 |
+
self.config.low_input_size = (256, 384)
|
1429 |
+
self.config.high_input_size = (32, 768)
|
1430 |
+
|
1431 |
+
if model_args.pretrain_vision_model is not None:
|
1432 |
+
vision_model_weights = torch.load(
|
1433 |
+
model_args.pretrain_vision_model, map_location="cpu"
|
1434 |
+
)
|
1435 |
+
self.vision_tower.vision_tower.load_state_dict(
|
1436 |
+
vision_model_weights, strict=True
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
if model_args.pretrain_clip_model is not None:
|
1440 |
+
clip_model = AutoModel.from_pretrained(model_args.pretrain_clip_model)
|
1441 |
+
self.vision_tower.vision_tower = clip_model.vision_encoder
|
1442 |
+
|
1443 |
+
self.config.mm_hidden_size = self.vision_tower.hidden_size
|
1444 |
+
|
1445 |
+
# mm_projector
|
1446 |
+
if getattr(self, "mm_projector", None) is None:
|
1447 |
+
self.mm_projector = build_mm_projector(self.config)
|
1448 |
+
|
1449 |
+
if model_args.pretrain_mm_mlp_adapter is not None:
|
1450 |
+
mm_projector_weights = torch.load(
|
1451 |
+
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
if self.config.mm_projector_type == "mlp":
|
1455 |
+
|
1456 |
+
def get_w(weights, keyword):
|
1457 |
+
return {
|
1458 |
+
f"{keyword}.{k.split(keyword + ".")[2]}": v
|
1459 |
+
for k, v in weights.items()
|
1460 |
+
if keyword in k
|
1461 |
+
}
|
1462 |
+
|
1463 |
+
elif self.config.mm_projector_type == "low_high_mlp":
|
1464 |
+
|
1465 |
+
def get_w(weights, keyword):
|
1466 |
+
result = {}
|
1467 |
+
for k, v in weights.items():
|
1468 |
+
if keyword in k:
|
1469 |
+
if f"{keyword}.{keyword}" in k:
|
1470 |
+
part = k.split(f"{keyword}.{keyword}.")[1]
|
1471 |
+
result[f"mm_projector.{part}"] = v
|
1472 |
+
elif f"{keyword}." in k:
|
1473 |
+
part = k.split(f"{keyword}.")[1]
|
1474 |
+
result[part] = v
|
1475 |
+
return result
|
1476 |
+
|
1477 |
+
elif self.config.mm_projector_type == "mixer":
|
1478 |
+
|
1479 |
+
def get_w(weights, keyword):
|
1480 |
+
result = {}
|
1481 |
+
for k, v in weights.items():
|
1482 |
+
if keyword in k:
|
1483 |
+
new_key = k.split(".")
|
1484 |
+
if len(new_key) > 2:
|
1485 |
+
new_key = ".".join(new_key[2:])
|
1486 |
+
result[new_key] = v
|
1487 |
+
return result
|
1488 |
+
|
1489 |
+
else:
|
1490 |
+
|
1491 |
+
def get_w(weights, keyword):
|
1492 |
+
result = {}
|
1493 |
+
for k, v in weights.items():
|
1494 |
+
if keyword in k:
|
1495 |
+
new_key = k.split(".")
|
1496 |
+
if len(new_key) > 2:
|
1497 |
+
new_key = ".".join(new_key[2:])
|
1498 |
+
result[new_key] = v
|
1499 |
+
return result
|
1500 |
+
|
1501 |
+
self.mm_projector.load_state_dict(
|
1502 |
+
get_w(mm_projector_weights, "mm_projector"), strict=True
|
1503 |
+
)
|
1504 |
+
|
1505 |
+
|
1506 |
+
class VLMMetaForCausalLM(ABC):
|
1507 |
+
@abstractmethod
|
1508 |
+
def get_model(self):
|
1509 |
+
pass
|
1510 |
+
|
1511 |
+
def get_vision_tower(self):
|
1512 |
+
return self.get_model().get_vision_tower()
|
1513 |
+
|
1514 |
+
def encode_images(self, images):
|
1515 |
+
image_features = self.get_model().get_vision_tower()(images)
|
1516 |
+
image_features = self.get_model().mm_projector(image_features)
|
1517 |
+
return image_features
|
1518 |
+
|
1519 |
+
def prepare_inputs_for_multimodal(
|
1520 |
+
self,
|
1521 |
+
input_ids,
|
1522 |
+
position_ids,
|
1523 |
+
attention_mask,
|
1524 |
+
past_key_values,
|
1525 |
+
labels,
|
1526 |
+
images,
|
1527 |
+
):
|
1528 |
+
vision_tower = self.get_vision_tower()
|
1529 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1530 |
+
return (
|
1531 |
+
input_ids,
|
1532 |
+
position_ids,
|
1533 |
+
attention_mask,
|
1534 |
+
past_key_values,
|
1535 |
+
None,
|
1536 |
+
labels,
|
1537 |
+
)
|
1538 |
+
else:
|
1539 |
+
image_features = self.encode_images(images)
|
1540 |
+
inputs_embeds = self.get_model().embed_tokens(input_ids)
|
1541 |
+
inputs_embeds = torch.cat(
|
1542 |
+
(
|
1543 |
+
inputs_embeds[:, :1, :],
|
1544 |
+
image_features,
|
1545 |
+
inputs_embeds[:, (image_features.shape[1] + 1) :, :],
|
1546 |
+
),
|
1547 |
+
dim=1,
|
1548 |
+
)
|
1549 |
+
return (
|
1550 |
+
None,
|
1551 |
+
position_ids,
|
1552 |
+
attention_mask,
|
1553 |
+
past_key_values,
|
1554 |
+
inputs_embeds,
|
1555 |
+
labels,
|
1556 |
+
)
|
1557 |
+
|
1558 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
1559 |
+
num_new_tokens = model_args.num_new_tokens
|
1560 |
+
|
1561 |
+
self.resize_token_embeddings(len(tokenizer))
|
1562 |
+
|
1563 |
+
if num_new_tokens > 0:
|
1564 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
1565 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
1566 |
+
|
1567 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
1568 |
+
dim=0, keepdim=True
|
1569 |
+
)
|
1570 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
1571 |
+
dim=0, keepdim=True
|
1572 |
+
)
|
1573 |
+
|
1574 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
1575 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
1576 |
+
|
1577 |
+
if model_args.tune_mm_mlp_adapter:
|
1578 |
+
for p in self.get_input_embeddings().parameters():
|
1579 |
+
p.requires_grad = True
|
1580 |
+
for p in self.get_output_embeddings().parameters():
|
1581 |
+
p.requires_grad = False
|
1582 |
+
else:
|
1583 |
+
for p in self.get_input_embeddings().parameters():
|
1584 |
+
p.requires_grad = True
|
1585 |
+
for p in self.get_output_embeddings().parameters():
|
1586 |
+
p.requires_grad = True
|
1587 |
+
|
1588 |
+
if model_args.pretrain_mm_mlp_adapter:
|
1589 |
+
mm_projector_weights = torch.load(
|
1590 |
+
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
|
1591 |
+
)
|
1592 |
+
|
1593 |
+
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
|
1594 |
+
|
1595 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
1596 |
+
input_embeddings = embed_tokens_weight
|
1597 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
1598 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
1599 |
+
else:
|
1600 |
+
raise ValueError(
|
1601 |
+
f"Unexpected embed_tokens_weight shape. "
|
1602 |
+
f"Pretrained: {embed_tokens_weight.shape}. "
|
1603 |
+
f"Current: {input_embeddings.shape}. "
|
1604 |
+
f"Number of new tokens: {num_new_tokens}."
|
1605 |
+
)
|
1606 |
+
|
1607 |
+
|
1608 |
+
class VLMQwenConfig(Qwen2Config):
|
1609 |
+
model_type = "vlm_qwen"
|
1610 |
+
|
1611 |
+
|
1612 |
+
class VLMQwenModel(VLMMetaModel, Qwen2Model):
|
1613 |
+
config_class = VLMQwenConfig
|
1614 |
+
|
1615 |
+
def __init__(self, config: Qwen2Config):
|
1616 |
+
super(VLMQwenModel, self).__init__(config)
|
1617 |
+
|
1618 |
+
|
1619 |
+
class VLMQwenForCausalLM(Qwen2ForCausalLM, VLMMetaForCausalLM):
|
1620 |
+
config_class = VLMQwenConfig
|
1621 |
+
|
1622 |
+
def __init__(self, config):
|
1623 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
1624 |
+
self.model = VLMQwenModel(config)
|
1625 |
+
self.pretraining_tp = getattr(config, "pretraining_tp", None)
|
1626 |
+
self.vocab_size = config.vocab_size
|
1627 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1628 |
+
self.post_init()
|
1629 |
+
|
1630 |
+
def get_model(self):
|
1631 |
+
return self.model
|
1632 |
+
|
1633 |
+
def forward(
|
1634 |
+
self,
|
1635 |
+
input_ids: torch.LongTensor = None,
|
1636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1637 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1638 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1639 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1640 |
+
labels: Optional[torch.LongTensor] = None,
|
1641 |
+
use_cache: Optional[bool] = None,
|
1642 |
+
output_attentions: Optional[bool] = None,
|
1643 |
+
output_hidden_states: Optional[bool] = None,
|
1644 |
+
images: Optional[torch.FloatTensor] = None,
|
1645 |
+
image_sizes: Optional[List[List[int]]] = None,
|
1646 |
+
return_dict: Optional[bool] = None,
|
1647 |
+
num_logits_to_keep: Optional[int] = None,
|
1648 |
+
**kwargs: Any,
|
1649 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1650 |
+
|
1651 |
+
if inputs_embeds is None:
|
1652 |
+
(
|
1653 |
+
input_ids,
|
1654 |
+
position_ids,
|
1655 |
+
attention_mask,
|
1656 |
+
past_key_values,
|
1657 |
+
inputs_embeds,
|
1658 |
+
labels,
|
1659 |
+
) = self.prepare_inputs_for_multimodal(
|
1660 |
+
input_ids, position_ids, attention_mask, past_key_values, labels, images
|
1661 |
+
)
|
1662 |
+
|
1663 |
+
return super().forward(
|
1664 |
+
input_ids=input_ids,
|
1665 |
+
attention_mask=attention_mask,
|
1666 |
+
position_ids=position_ids,
|
1667 |
+
past_key_values=past_key_values,
|
1668 |
+
inputs_embeds=inputs_embeds,
|
1669 |
+
labels=labels,
|
1670 |
+
use_cache=use_cache,
|
1671 |
+
output_attentions=output_attentions,
|
1672 |
+
output_hidden_states=output_hidden_states,
|
1673 |
+
return_dict=return_dict,
|
1674 |
+
)
|
1675 |
+
|
1676 |
+
@torch.no_grad()
|
1677 |
+
def generate(
|
1678 |
+
self,
|
1679 |
+
images: Optional[torch.Tensor] = None,
|
1680 |
+
inputs: Optional[torch.Tensor] = None,
|
1681 |
+
**kwargs,
|
1682 |
+
) -> Union[GenerateOutput, torch.LongTensor, Any]:
|
1683 |
+
position_ids = kwargs.pop("position_ids", None)
|
1684 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
1685 |
+
if "inputs_embeds" in kwargs:
|
1686 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
1687 |
+
|
1688 |
+
if images is not None:
|
1689 |
+
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = (
|
1690 |
+
self.prepare_inputs_for_multimodal(
|
1691 |
+
inputs,
|
1692 |
+
position_ids,
|
1693 |
+
attention_mask,
|
1694 |
+
None,
|
1695 |
+
None,
|
1696 |
+
images,
|
1697 |
+
)
|
1698 |
+
)
|
1699 |
+
else:
|
1700 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
1701 |
+
|
1702 |
+
output_ids = super().generate(inputs_embeds=inputs_embeds, **kwargs)
|
1703 |
+
return output_ids
|
1704 |
+
|
1705 |
+
def prepare_inputs_for_generation(
|
1706 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
1707 |
+
):
|
1708 |
+
images = kwargs.pop("images", None)
|
1709 |
+
inputs = super().prepare_inputs_for_generation(
|
1710 |
+
input_ids,
|
1711 |
+
past_key_values=past_key_values,
|
1712 |
+
inputs_embeds=inputs_embeds,
|
1713 |
+
**kwargs,
|
1714 |
+
)
|
1715 |
+
if images is not None:
|
1716 |
+
inputs["images"] = images
|
1717 |
+
return inputs
|
1718 |
+
|
1719 |
+
|
1720 |
+
AutoConfig.register("vlm_qwen", VLMQwenConfig)
|
1721 |
+
AutoModelForCausalLM.register(VLMQwenConfig, VLMQwenForCausalLM)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<im_patch>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"eos_token": {
|
12 |
+
"content": "<|im_end|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"pad_token": {
|
19 |
+
"content": "<|endoftext|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
}
|
25 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<im_patch>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"<im_patch>"
|
192 |
+
],
|
193 |
+
"bos_token": null,
|
194 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
195 |
+
"clean_up_tokenization_spaces": false,
|
196 |
+
"eos_token": "<|im_end|>",
|
197 |
+
"errors": "replace",
|
198 |
+
"extra_special_tokens": {},
|
199 |
+
"model_max_length": 131072,
|
200 |
+
"pad_token": "<|endoftext|>",
|
201 |
+
"padding_side": "right",
|
202 |
+
"split_special_tokens": false,
|
203 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
204 |
+
"unk_token": null
|
205 |
+
}
|
vision_tower.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23931cb2829eec4a5895e4d94e2367942ab0cb0f07d383927d80bda3094eed37
|
3 |
+
size 73251396
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|