Mallikarjunareddy commited on
Commit
0c434ec
·
verified ·
1 Parent(s): eaaa8d5

Add model card

Browse files
Files changed (1) hide show
  1. README.md +77 -38
README.md CHANGED
@@ -1,65 +1,104 @@
 
1
  ---
2
- library_name: transformers
3
  license: apache-2.0
4
  base_model: distilbert-base-uncased
5
  tags:
6
  - generated_from_trainer
 
 
 
 
7
  metrics:
8
  - accuracy
9
  model-index:
10
  - name: malli_finetuned_model
11
- results: []
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
  # malli_finetuned_model
18
 
19
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.0011
22
- - Accuracy: 1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- ## Model description
25
 
26
- More information needed
 
 
 
27
 
28
- ## Intended uses & limitations
29
 
30
- More information needed
 
 
 
 
 
31
 
32
- ## Training and evaluation data
33
 
34
- More information needed
 
 
35
 
36
- ## Training procedure
37
 
38
- ### Training hyperparameters
 
39
 
40
- The following hyperparameters were used during training:
41
- - learning_rate: 2e-05
42
- - train_batch_size: 16
43
- - eval_batch_size: 16
44
- - seed: 42
45
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
- - lr_scheduler_type: linear
47
- - lr_scheduler_warmup_steps: 100
48
- - num_epochs: 3
49
- - mixed_precision_training: Native AMP
50
 
51
- ### Training results
 
 
 
 
 
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
- | 0.0014 | 1.0 | 141 | 0.0011 | 1.0 |
56
- | 0.0005 | 2.0 | 282 | 0.0004 | 1.0 |
57
- | 0.0004 | 3.0 | 423 | 0.0003 | 1.0 |
58
 
 
 
 
 
59
 
60
- ### Framework versions
61
 
62
- - Transformers 4.55.0
63
- - Pytorch 2.6.0+cu124
64
- - Datasets 4.0.0
65
- - Tokenizers 0.21.4
 
 
 
 
 
 
1
+
2
  ---
 
3
  license: apache-2.0
4
  base_model: distilbert-base-uncased
5
  tags:
6
  - generated_from_trainer
7
+ - sentiment-analysis
8
+ - movie-reviews
9
+ datasets:
10
+ - imdb
11
  metrics:
12
  - accuracy
13
  model-index:
14
  - name: malli_finetuned_model
15
+ results:
16
+ - task:
17
+ type: text-classification
18
+ name: Text Classification
19
+ dataset:
20
+ name: imdb
21
+ type: imdb
22
+ metrics:
23
+ - type: accuracy
24
+ value: 1.0000
25
  ---
26
 
 
 
 
27
  # malli_finetuned_model
28
 
29
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the IMDB movie reviews dataset.
30
+ It achieves an accuracy of **100.0%** on the test set.
31
+
32
+ ## Model Description
33
+
34
+ This is a sentiment analysis model specifically trained on movie reviews. It can classify text as either positive or negative sentiment.
35
+
36
+ ## Intended Uses & Limitations
37
+
38
+ **Intended Uses:**
39
+ - Sentiment analysis of movie reviews
40
+ - General sentiment classification of English text
41
+ - Educational purposes and research
42
+
43
+ **Limitations:**
44
+ - Trained specifically on movie reviews, may not generalize well to other domains
45
+ - English language only
46
+ - Binary classification (positive/negative) - no neutral sentiment
47
+
48
+ ## Training Procedure
49
 
50
+ ### Training Data
51
 
52
+ The model was fine-tuned on the IMDB movie reviews dataset:
53
+ - Training samples: 2250
54
+ - Validation samples: 250
55
+ - Test samples: 500
56
 
57
+ ### Training Hyperparameters
58
 
59
+ - Learning rate: 2e-05
60
+ - Train batch size: 16
61
+ - Eval batch size: 16
62
+ - Number of epochs: 3
63
+ - Optimizer: AdamW
64
+ - Weight decay: 0.01
65
 
66
+ ### Results
67
 
68
+ | Metric | Value |
69
+ |--------|-------|
70
+ | Accuracy | 1.0000 |
71
 
72
+ ## Usage
73
 
74
+ ```python
75
+ from transformers import pipeline
76
 
77
+ # Load the model
78
+ classifier = pipeline("text-classification", model="Mallikarjunareddy/malli_finetuned_model")
 
 
 
 
 
 
 
 
79
 
80
+ # Classify text
81
+ result = classifier("This movie was absolutely amazing!")
82
+ print(result)
83
+ # Output: [{'label': 'LABEL_1', 'score': 0.9998}]
84
+ # LABEL_0 = Negative, LABEL_1 = Positive
85
+ ```
86
 
87
+ ## Model Performance
 
 
 
 
88
 
89
+ The model shows strong performance on movie review sentiment analysis:
90
+ - **Test Accuracy: 100.0%**
91
+ - Baseline (random guessing): 50.0%
92
+ - Improvement: +50.0 percentage points
93
 
94
+ ## Citation
95
 
96
+ ```
97
+ @misc{malli_finetuned_model_2024,
98
+ author = {Your Name},
99
+ title = {malli_finetuned_model: Fine-tuned IMDB Sentiment Analysis},
100
+ year = {2024},
101
+ publisher = {Hugging Face},
102
+ howpublished = {\url{https://huggingface.co/Mallikarjunareddy/malli_finetuned_model}}
103
+ }
104
+ ```