Manish014 commited on
Commit
9420955
·
verified ·
1 Parent(s): acd027e

Added Gradio UI with examples

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
+
4
+ # Load model and tokenizer
5
+ model = AutoModelForSeq2SeqLM.from_pretrained("Manish014/review-summariser-gpt-config1")
6
+ tokenizer = AutoTokenizer.from_pretrained("Manish014/review-summariser-gpt-config1")
7
+ sentiment_pipeline = pipeline("sentiment-analysis")
8
+
9
+ # Function to summarize + classify
10
+ def summarize_and_classify(review):
11
+ if not review.strip():
12
+ return "Please enter a review.", "N/A"
13
+ inputs = tokenizer("summarize: " + review, return_tensors="pt", truncation=True)
14
+ output_ids = model.generate(inputs["input_ids"], max_length=60, min_length=10, num_beams=4)
15
+ summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
16
+ sentiment = sentiment_pipeline(review)[0]['label']
17
+ return summary, sentiment
18
+
19
+ # Gradio Interface
20
+ iface = gr.Interface(
21
+ fn=summarize_and_classify,
22
+ inputs=gr.Textbox(label="📝 Enter a Product Review", lines=4, placeholder="Paste a review here..."),
23
+ outputs=[
24
+ gr.Textbox(label="📌 Generated Summary"),
25
+ gr.Textbox(label="💬 Sentiment")
26
+ ],
27
+ title="🧠 Review Summariser GPT + Sentiment Classifier",
28
+ description="Paste a product review to generate a short summary and detect sentiment using a fine-tuned T5 model.",
29
+ examples=[
30
+ ["This is hands down the best vacuum cleaner I’ve ever owned. It’s lightweight, powerful, and the battery lasts forever!"],
31
+ ["Product arrived broken and late. Extremely disappointed with the quality and packaging."],
32
+ ["Good value for the price. The headphones sound great, but the build feels a bit cheap."]
33
+ ]
34
+ )
35
+
36
+ iface.launch()