Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.48 +/- 0.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6848e628300c8da4f61a50b1ebb64c9dd52d18463f1541e653230c5a11c0ced4
|
3 |
+
size 108058
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f60193c3e50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f60193c7200>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681119844542880369,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQAbjPhWL6D0ROo0/klRQv6wrlj/+IHo+bFBGv+2hyb9r3sk/d67QP+Yp2D9nNVu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.41848388 -0.03289568 0.5332415 ]\n [ 0.41848388 -0.03289568 0.5332415 ]\n [ 0.41848388 -0.03289568 0.5332415 ]\n [ 0.41848388 -0.03289568 0.5332415 ]]",
|
38 |
+
"desired_goal": "[[ 0.44340706 0.11354653 1.1033345 ]\n [-0.81379044 1.1732078 0.24426648]\n [-0.77466464 -1.5752541 1.5771002 ]\n [ 1.6303242 1.6887786 -0.8562836 ]]",
|
39 |
+
"observation": "[[ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7emaPUeGNz2lkG4+7XdsPeFmG71G4M49mxcFPVB5ob3XPoY9iFuhPXr7hbxY1lo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.07564149 0.04480579 0.23297365]\n [ 0.05773156 -0.03793991 0.10101371]\n [ 0.03249322 -0.07884467 0.06554954]\n [ 0.07878786 -0.01635526 0.21370828]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISgwCK4cW5r+UhpRSlIwBbJRLMowBdJRHQKfpmL876pJ1fZQoaAZoCWgPQwiKk/sdigLdv5SGlFKUaBVLMmgWR0Cn6Px+8XendX2UKGgGaAloD0MI++k/a3585L+UhpRSlGgVSzJoFkdAp+hOlANXo3V9lChoBmgJaA9DCBMoYhHDjuG/lIaUUpRoFUsyaBZHQKfoE72+PBB1fZQoaAZoCWgPQwjbw14oYDvVv5SGlFKUaBVLMmgWR0Cn6wkQ5FPSdX2UKGgGaAloD0MIC5krg2qD2b+UhpRSlGgVSzJoFkdAp+psFlkH2XV9lChoBmgJaA9DCL2NzY5U39e/lIaUUpRoFUsyaBZHQKfpvR+jM3Z1fZQoaAZoCWgPQwgEHEKVmj3gv5SGlFKUaBVLMmgWR0Cn6YE/0NBodX2UKGgGaAloD0MIdJoF2h1S2b+UhpRSlGgVSzJoFkdAp+wnhESdv3V9lChoBmgJaA9DCLEYda29T82/lIaUUpRoFUsyaBZHQKfrin+AEuB1fZQoaAZoCWgPQwjf3jXoS2/Pv5SGlFKUaBVLMmgWR0Cn6tt+so2GdX2UKGgGaAloD0MI38Mlx53S3b+UhpRSlGgVSzJoFkdAp+qfkxREW3V9lChoBmgJaA9DCEBrfvylReW/lIaUUpRoFUsyaBZHQKftTcgQpWp1fZQoaAZoCWgPQwgY7fFCOjzMv5SGlFKUaBVLMmgWR0Cn7LC35N48dX2UKGgGaAloD0MIPzVeukkM1r+UhpRSlGgVSzJoFkdAp+wBxPwd83V9lChoBmgJaA9DCMDN4sXCENO/lIaUUpRoFUsyaBZHQKfrxdfsu4B1fZQoaAZoCWgPQwhWEANd+wLpv5SGlFKUaBVLMmgWR0Cn7mPexfOVdX2UKGgGaAloD0MIZd6q61DN4b+UhpRSlGgVSzJoFkdAp+3G1pj+aXV9lChoBmgJaA9DCCOkbmdfedi/lIaUUpRoFUsyaBZHQKftF96Tnq51fZQoaAZoCWgPQwjcniCx3T3Uv5SGlFKUaBVLMmgWR0Cn7NvuG9HudX2UKGgGaAloD0MIQ6m9iLZj7r+UhpRSlGgVSzJoFkdAp++pckdFOXV9lChoBmgJaA9DCPDce7jkuNO/lIaUUpRoFUsyaBZHQKfvDFgDzRR1fZQoaAZoCWgPQwjl0viFV5Lev5SGlFKUaBVLMmgWR0Cn7l1hLGrCdX2UKGgGaAloD0MIvRjKiXYV0L+UhpRSlGgVSzJoFkdAp+4hXZGrj3V9lChoBmgJaA9DCI0LB0KygOy/lIaUUpRoFUsyaBZHQKfwvHLidat1fZQoaAZoCWgPQwink2x1OSXWv5SGlFKUaBVLMmgWR0Cn8B9qcmShdX2UKGgGaAloD0MIqYQn9PoT6L+UhpRSlGgVSzJoFkdAp+9wkPczqXV9lChoBmgJaA9DCMCw/Pm2YNe/lIaUUpRoFUsyaBZHQKfvNKA8Swp1fZQoaAZoCWgPQwh2MjhKXp3Rv5SGlFKUaBVLMmgWR0Cn8dW12JSBdX2UKGgGaAloD0MIFhVxOslW4b+UhpRSlGgVSzJoFkdAp/E4qiGnGnV9lChoBmgJaA9DCOo9ldOeEuC/lIaUUpRoFUsyaBZHQKfwictGus91fZQoaAZoCWgPQwj+KOrMPaTiv5SGlFKUaBVLMmgWR0Cn8E3Q2MsIdX2UKGgGaAloD0MIameY2lIH3b+UhpRSlGgVSzJoFkdAp/LuQ+2VmnV9lChoBmgJaA9DCPVk/tE3adS/lIaUUpRoFUsyaBZHQKfyUTINmUZ1fZQoaAZoCWgPQwgbYye8BKfmv5SGlFKUaBVLMmgWR0Cn8aIv8IiUdX2UKGgGaAloD0MIMxXikXh5zL+UhpRSlGgVSzJoFkdAp/FmKjzqbHV9lChoBmgJaA9DCO1kcJS8uuW/lIaUUpRoFUsyaBZHQKf0EgFotcx1fZQoaAZoCWgPQwh6AIv8+iHZv5SGlFKUaBVLMmgWR0Cn83UBnzxxdX2UKGgGaAloD0MIpz/7kSIy0r+UhpRSlGgVSzJoFkdAp/LGC9RJmXV9lChoBmgJaA9DCFq9w+3QsNe/lIaUUpRoFUsyaBZHQKfyihSLqD91fZQoaAZoCWgPQwhuFFlrKLXFv5SGlFKUaBVLMmgWR0Cn9SywGGEgdX2UKGgGaAloD0MIGr/wSpLn07+UhpRSlGgVSzJoFkdAp/SPoHLRr3V9lChoBmgJaA9DCP/pBgq8k9u/lIaUUpRoFUsyaBZHQKfz4JeE7GN1fZQoaAZoCWgPQwi0OGOYE7Tsv5SGlFKUaBVLMmgWR0Cn86Tot+TedX2UKGgGaAloD0MILh1znrEv3L+UhpRSlGgVSzJoFkdAp/ZH2GqPwXV9lChoBmgJaA9DCJynOuRmOO+/lIaUUpRoFUsyaBZHQKf1qso2GZh1fZQoaAZoCWgPQwgAV7JjI5Div5SGlFKUaBVLMmgWR0Cn9PvFWGRFdX2UKGgGaAloD0MIXRlUG5wI4b+UhpRSlGgVSzJoFkdAp/S/9Nvfj3V9lChoBmgJaA9DCOHQWzy8Z+m/lIaUUpRoFUsyaBZHQKf3ZFuNxVB1fZQoaAZoCWgPQwjP3EPC937hv5SGlFKUaBVLMmgWR0Cn9sdCE6DHdX2UKGgGaAloD0MIMbWlDvJ617+UhpRSlGgVSzJoFkdAp/YYQvpQlHV9lChoBmgJaA9DCCi4WFGDaeW/lIaUUpRoFUsyaBZHQKf13EkSmIl1fZQoaAZoCWgPQwiiC+pb5vTlv5SGlFKUaBVLMmgWR0Cn+KOIyj59dX2UKGgGaAloD0MIsyjsouiB2b+UhpRSlGgVSzJoFkdAp/gGnO0LMXV9lChoBmgJaA9DCLLZkeo7P+C/lIaUUpRoFUsyaBZHQKf3V6OYIB11fZQoaAZoCWgPQwhlNPJ5xVPRv5SGlFKUaBVLMmgWR0Cn9xvCEYfodX2UKGgGaAloD0MIol7waU7e47+UhpRSlGgVSzJoFkdAp/nEHryDqXV9lChoBmgJaA9DCIHptG6D2ty/lIaUUpRoFUsyaBZHQKf5JxkupS91fZQoaAZoCWgPQwi/gF64c2HWv5SGlFKUaBVLMmgWR0Cn+HhAWznidX2UKGgGaAloD0MIiqw1lNqL17+UhpRSlGgVSzJoFkdAp/g8TFl05nV9lChoBmgJaA9DCAQ91LZhFNe/lIaUUpRoFUsyaBZHQKf62/Zdv891fZQoaAZoCWgPQwgsYthhTPrYv5SGlFKUaBVLMmgWR0Cn+j7aRISUdX2UKGgGaAloD0MIuynltRI65b+UhpRSlGgVSzJoFkdAp/mP3UQTVXV9lChoBmgJaA9DCII65dGNsOa/lIaUUpRoFUsyaBZHQKf5U+/QBxR1fZQoaAZoCWgPQwifW+hKBKrTv5SGlFKUaBVLMmgWR0Cn/AUYbbUPdX2UKGgGaAloD0MIml33ViQm3r+UhpRSlGgVSzJoFkdAp/toIIF/x3V9lChoBmgJaA9DCL+CNGPRdOC/lIaUUpRoFUsyaBZHQKf6uT+vQnh1fZQoaAZoCWgPQwgaogp/hjfUv5SGlFKUaBVLMmgWR0Cn+n1fmcOLdX2UKGgGaAloD0MIpIy4ADRK3L+UhpRSlGgVSzJoFkdAp/0kedTYNHV9lChoBmgJaA9DCBUDJJpAkem/lIaUUpRoFUsyaBZHQKf8h2FnIyV1fZQoaAZoCWgPQwhgkV8/xAbev5SGlFKUaBVLMmgWR0Cn+9hqj8DTdX2UKGgGaAloD0MIvXK9baZC1L+UhpRSlGgVSzJoFkdAp/uchxHXmXV9lChoBmgJaA9DCLN4sTBETtO/lIaUUpRoFUsyaBZHQKf+QeMAFPl1fZQoaAZoCWgPQwg0+PvFbMnVv5SGlFKUaBVLMmgWR0Cn/aTQVsUJdX2UKGgGaAloD0MIWvJ4Wn7g2L+UhpRSlGgVSzJoFkdAp/z12LYPG3V9lChoBmgJaA9DCN3NUx1ys+O/lIaUUpRoFUsyaBZHQKf8ueeWfK91fZQoaAZoCWgPQwgnFCLgEKrlv5SGlFKUaBVLMmgWR0Cn/+4hllK9dX2UKGgGaAloD0MI3IE65dGN27+UhpRSlGgVSzJoFkdAp/9R1A7gbnV9lChoBmgJaA9DCJLsEWqGVOO/lIaUUpRoFUsyaBZHQKf+o4gA6uJ1fZQoaAZoCWgPQwid2a7QB0vqv5SGlFKUaBVLMmgWR0Cn/mh5HEuQdX2UKGgGaAloD0MIGhTNA1jk17+UhpRSlGgVSzJoFkdAqAHzEk0JnnV9lChoBmgJaA9DCCdKQiJt4+G/lIaUUpRoFUsyaBZHQKgBVqv/zat1fZQoaAZoCWgPQwhgAyLElbPev5SGlFKUaBVLMmgWR0CoAKiY1He8dX2UKGgGaAloD0MIPDCA8KFE5b+UhpRSlGgVSzJoFkdAqABuj7ALzHV9lChoBmgJaA9DCAu2EU92M+G/lIaUUpRoFUsyaBZHQKgDzrAxi5N1fZQoaAZoCWgPQwgG1QYnol/ov5SGlFKUaBVLMmgWR0CoAzKqfe1sdX2UKGgGaAloD0MI7G0zFeKR1b+UhpRSlGgVSzJoFkdAqAKE34sVcnV9lChoBmgJaA9DCHB87ZklAdq/lIaUUpRoFUsyaBZHQKgCSg4ffXR1fZQoaAZoCWgPQwih15/E587ov5SGlFKUaBVLMmgWR0CoBbrN4Z/DdX2UKGgGaAloD0MIQiJt409U3L+UhpRSlGgVSzJoFkdAqAUemLtNSXV9lChoBmgJaA9DCJmDoKNVLeW/lIaUUpRoFUsyaBZHQKgEcIRAbAF1fZQoaAZoCWgPQwi9GMqJdhXjv5SGlFKUaBVLMmgWR0CoBDVSn+AFdX2UKGgGaAloD0MIgJ9x4UBI07+UhpRSlGgVSzJoFkdAqAeflZHNHHV9lChoBmgJaA9DCCBB8WPMXdq/lIaUUpRoFUsyaBZHQKgHA4e9zwN1fZQoaAZoCWgPQwi4BrZKsDjlv5SGlFKUaBVLMmgWR0CoBlWqT8pDdX2UKGgGaAloD0MI+13Ymq281r+UhpRSlGgVSzJoFkdAqAYaltTDO3V9lChoBmgJaA9DCJZem42VGOi/lIaUUpRoFUsyaBZHQKgJGJ9iMHd1fZQoaAZoCWgPQwgEjZlEveDiv5SGlFKUaBVLMmgWR0CoCHt/e+EidX2UKGgGaAloD0MIFCAKZkzB1b+UhpRSlGgVSzJoFkdAqAfMaQ3gk3V9lChoBmgJaA9DCC+GcqJdBeG/lIaUUpRoFUsyaBZHQKgHkHJLdvd1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af5a5d9a496691cb0778926943e55b13815f3ebd0e36befa874ecd9b2cc1a213
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:568545c9fdd7efc0a9309a16a30b7e5cf259a53ffc6ff90f7f773fa111d4079e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f60193c3e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f60193c7200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681119844542880369, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQAbjPhWL6D0ROo0/klRQv6wrlj/+IHo+bFBGv+2hyb9r3sk/d67QP+Yp2D9nNVu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41848388 -0.03289568 0.5332415 ]\n [ 0.41848388 -0.03289568 0.5332415 ]\n [ 0.41848388 -0.03289568 0.5332415 ]\n [ 0.41848388 -0.03289568 0.5332415 ]]", "desired_goal": "[[ 0.44340706 0.11354653 1.1033345 ]\n [-0.81379044 1.1732078 0.24426648]\n [-0.77466464 -1.5752541 1.5771002 ]\n [ 1.6303242 1.6887786 -0.8562836 ]]", "observation": "[[ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568 0.5332415 0.00849846 -0.00354351 -0.00725297]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7emaPUeGNz2lkG4+7XdsPeFmG71G4M49mxcFPVB5ob3XPoY9iFuhPXr7hbxY1lo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07564149 0.04480579 0.23297365]\n [ 0.05773156 -0.03793991 0.10101371]\n [ 0.03249322 -0.07884467 0.06554954]\n [ 0.07878786 -0.01635526 0.21370828]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISgwCK4cW5r+UhpRSlIwBbJRLMowBdJRHQKfpmL876pJ1fZQoaAZoCWgPQwiKk/sdigLdv5SGlFKUaBVLMmgWR0Cn6Px+8XendX2UKGgGaAloD0MI++k/a3585L+UhpRSlGgVSzJoFkdAp+hOlANXo3V9lChoBmgJaA9DCBMoYhHDjuG/lIaUUpRoFUsyaBZHQKfoE72+PBB1fZQoaAZoCWgPQwjbw14oYDvVv5SGlFKUaBVLMmgWR0Cn6wkQ5FPSdX2UKGgGaAloD0MIC5krg2qD2b+UhpRSlGgVSzJoFkdAp+psFlkH2XV9lChoBmgJaA9DCL2NzY5U39e/lIaUUpRoFUsyaBZHQKfpvR+jM3Z1fZQoaAZoCWgPQwgEHEKVmj3gv5SGlFKUaBVLMmgWR0Cn6YE/0NBodX2UKGgGaAloD0MIdJoF2h1S2b+UhpRSlGgVSzJoFkdAp+wnhESdv3V9lChoBmgJaA9DCLEYda29T82/lIaUUpRoFUsyaBZHQKfrin+AEuB1fZQoaAZoCWgPQwjf3jXoS2/Pv5SGlFKUaBVLMmgWR0Cn6tt+so2GdX2UKGgGaAloD0MI38Mlx53S3b+UhpRSlGgVSzJoFkdAp+qfkxREW3V9lChoBmgJaA9DCEBrfvylReW/lIaUUpRoFUsyaBZHQKftTcgQpWp1fZQoaAZoCWgPQwgY7fFCOjzMv5SGlFKUaBVLMmgWR0Cn7LC35N48dX2UKGgGaAloD0MIPzVeukkM1r+UhpRSlGgVSzJoFkdAp+wBxPwd83V9lChoBmgJaA9DCMDN4sXCENO/lIaUUpRoFUsyaBZHQKfrxdfsu4B1fZQoaAZoCWgPQwhWEANd+wLpv5SGlFKUaBVLMmgWR0Cn7mPexfOVdX2UKGgGaAloD0MIZd6q61DN4b+UhpRSlGgVSzJoFkdAp+3G1pj+aXV9lChoBmgJaA9DCCOkbmdfedi/lIaUUpRoFUsyaBZHQKftF96Tnq51fZQoaAZoCWgPQwjcniCx3T3Uv5SGlFKUaBVLMmgWR0Cn7NvuG9HudX2UKGgGaAloD0MIQ6m9iLZj7r+UhpRSlGgVSzJoFkdAp++pckdFOXV9lChoBmgJaA9DCPDce7jkuNO/lIaUUpRoFUsyaBZHQKfvDFgDzRR1fZQoaAZoCWgPQwjl0viFV5Lev5SGlFKUaBVLMmgWR0Cn7l1hLGrCdX2UKGgGaAloD0MIvRjKiXYV0L+UhpRSlGgVSzJoFkdAp+4hXZGrj3V9lChoBmgJaA9DCI0LB0KygOy/lIaUUpRoFUsyaBZHQKfwvHLidat1fZQoaAZoCWgPQwink2x1OSXWv5SGlFKUaBVLMmgWR0Cn8B9qcmShdX2UKGgGaAloD0MIqYQn9PoT6L+UhpRSlGgVSzJoFkdAp+9wkPczqXV9lChoBmgJaA9DCMCw/Pm2YNe/lIaUUpRoFUsyaBZHQKfvNKA8Swp1fZQoaAZoCWgPQwh2MjhKXp3Rv5SGlFKUaBVLMmgWR0Cn8dW12JSBdX2UKGgGaAloD0MIFhVxOslW4b+UhpRSlGgVSzJoFkdAp/E4qiGnGnV9lChoBmgJaA9DCOo9ldOeEuC/lIaUUpRoFUsyaBZHQKfwictGus91fZQoaAZoCWgPQwj+KOrMPaTiv5SGlFKUaBVLMmgWR0Cn8E3Q2MsIdX2UKGgGaAloD0MIameY2lIH3b+UhpRSlGgVSzJoFkdAp/LuQ+2VmnV9lChoBmgJaA9DCPVk/tE3adS/lIaUUpRoFUsyaBZHQKfyUTINmUZ1fZQoaAZoCWgPQwgbYye8BKfmv5SGlFKUaBVLMmgWR0Cn8aIv8IiUdX2UKGgGaAloD0MIMxXikXh5zL+UhpRSlGgVSzJoFkdAp/FmKjzqbHV9lChoBmgJaA9DCO1kcJS8uuW/lIaUUpRoFUsyaBZHQKf0EgFotcx1fZQoaAZoCWgPQwh6AIv8+iHZv5SGlFKUaBVLMmgWR0Cn83UBnzxxdX2UKGgGaAloD0MIpz/7kSIy0r+UhpRSlGgVSzJoFkdAp/LGC9RJmXV9lChoBmgJaA9DCFq9w+3QsNe/lIaUUpRoFUsyaBZHQKfyihSLqD91fZQoaAZoCWgPQwhuFFlrKLXFv5SGlFKUaBVLMmgWR0Cn9SywGGEgdX2UKGgGaAloD0MIGr/wSpLn07+UhpRSlGgVSzJoFkdAp/SPoHLRr3V9lChoBmgJaA9DCP/pBgq8k9u/lIaUUpRoFUsyaBZHQKfz4JeE7GN1fZQoaAZoCWgPQwi0OGOYE7Tsv5SGlFKUaBVLMmgWR0Cn86Tot+TedX2UKGgGaAloD0MILh1znrEv3L+UhpRSlGgVSzJoFkdAp/ZH2GqPwXV9lChoBmgJaA9DCJynOuRmOO+/lIaUUpRoFUsyaBZHQKf1qso2GZh1fZQoaAZoCWgPQwgAV7JjI5Div5SGlFKUaBVLMmgWR0Cn9PvFWGRFdX2UKGgGaAloD0MIXRlUG5wI4b+UhpRSlGgVSzJoFkdAp/S/9Nvfj3V9lChoBmgJaA9DCOHQWzy8Z+m/lIaUUpRoFUsyaBZHQKf3ZFuNxVB1fZQoaAZoCWgPQwjP3EPC937hv5SGlFKUaBVLMmgWR0Cn9sdCE6DHdX2UKGgGaAloD0MIMbWlDvJ617+UhpRSlGgVSzJoFkdAp/YYQvpQlHV9lChoBmgJaA9DCCi4WFGDaeW/lIaUUpRoFUsyaBZHQKf13EkSmIl1fZQoaAZoCWgPQwiiC+pb5vTlv5SGlFKUaBVLMmgWR0Cn+KOIyj59dX2UKGgGaAloD0MIsyjsouiB2b+UhpRSlGgVSzJoFkdAp/gGnO0LMXV9lChoBmgJaA9DCLLZkeo7P+C/lIaUUpRoFUsyaBZHQKf3V6OYIB11fZQoaAZoCWgPQwhlNPJ5xVPRv5SGlFKUaBVLMmgWR0Cn9xvCEYfodX2UKGgGaAloD0MIol7waU7e47+UhpRSlGgVSzJoFkdAp/nEHryDqXV9lChoBmgJaA9DCIHptG6D2ty/lIaUUpRoFUsyaBZHQKf5JxkupS91fZQoaAZoCWgPQwi/gF64c2HWv5SGlFKUaBVLMmgWR0Cn+HhAWznidX2UKGgGaAloD0MIiqw1lNqL17+UhpRSlGgVSzJoFkdAp/g8TFl05nV9lChoBmgJaA9DCAQ91LZhFNe/lIaUUpRoFUsyaBZHQKf62/Zdv891fZQoaAZoCWgPQwgsYthhTPrYv5SGlFKUaBVLMmgWR0Cn+j7aRISUdX2UKGgGaAloD0MIuynltRI65b+UhpRSlGgVSzJoFkdAp/mP3UQTVXV9lChoBmgJaA9DCII65dGNsOa/lIaUUpRoFUsyaBZHQKf5U+/QBxR1fZQoaAZoCWgPQwifW+hKBKrTv5SGlFKUaBVLMmgWR0Cn/AUYbbUPdX2UKGgGaAloD0MIml33ViQm3r+UhpRSlGgVSzJoFkdAp/toIIF/x3V9lChoBmgJaA9DCL+CNGPRdOC/lIaUUpRoFUsyaBZHQKf6uT+vQnh1fZQoaAZoCWgPQwgaogp/hjfUv5SGlFKUaBVLMmgWR0Cn+n1fmcOLdX2UKGgGaAloD0MIpIy4ADRK3L+UhpRSlGgVSzJoFkdAp/0kedTYNHV9lChoBmgJaA9DCBUDJJpAkem/lIaUUpRoFUsyaBZHQKf8h2FnIyV1fZQoaAZoCWgPQwhgkV8/xAbev5SGlFKUaBVLMmgWR0Cn+9hqj8DTdX2UKGgGaAloD0MIvXK9baZC1L+UhpRSlGgVSzJoFkdAp/uchxHXmXV9lChoBmgJaA9DCLN4sTBETtO/lIaUUpRoFUsyaBZHQKf+QeMAFPl1fZQoaAZoCWgPQwg0+PvFbMnVv5SGlFKUaBVLMmgWR0Cn/aTQVsUJdX2UKGgGaAloD0MIWvJ4Wn7g2L+UhpRSlGgVSzJoFkdAp/z12LYPG3V9lChoBmgJaA9DCN3NUx1ys+O/lIaUUpRoFUsyaBZHQKf8ueeWfK91fZQoaAZoCWgPQwgnFCLgEKrlv5SGlFKUaBVLMmgWR0Cn/+4hllK9dX2UKGgGaAloD0MI3IE65dGN27+UhpRSlGgVSzJoFkdAp/9R1A7gbnV9lChoBmgJaA9DCJLsEWqGVOO/lIaUUpRoFUsyaBZHQKf+o4gA6uJ1fZQoaAZoCWgPQwid2a7QB0vqv5SGlFKUaBVLMmgWR0Cn/mh5HEuQdX2UKGgGaAloD0MIGhTNA1jk17+UhpRSlGgVSzJoFkdAqAHzEk0JnnV9lChoBmgJaA9DCCdKQiJt4+G/lIaUUpRoFUsyaBZHQKgBVqv/zat1fZQoaAZoCWgPQwhgAyLElbPev5SGlFKUaBVLMmgWR0CoAKiY1He8dX2UKGgGaAloD0MIPDCA8KFE5b+UhpRSlGgVSzJoFkdAqABuj7ALzHV9lChoBmgJaA9DCAu2EU92M+G/lIaUUpRoFUsyaBZHQKgDzrAxi5N1fZQoaAZoCWgPQwgG1QYnol/ov5SGlFKUaBVLMmgWR0CoAzKqfe1sdX2UKGgGaAloD0MI7G0zFeKR1b+UhpRSlGgVSzJoFkdAqAKE34sVcnV9lChoBmgJaA9DCHB87ZklAdq/lIaUUpRoFUsyaBZHQKgCSg4ffXR1fZQoaAZoCWgPQwih15/E587ov5SGlFKUaBVLMmgWR0CoBbrN4Z/DdX2UKGgGaAloD0MIQiJt409U3L+UhpRSlGgVSzJoFkdAqAUemLtNSXV9lChoBmgJaA9DCJmDoKNVLeW/lIaUUpRoFUsyaBZHQKgEcIRAbAF1fZQoaAZoCWgPQwi9GMqJdhXjv5SGlFKUaBVLMmgWR0CoBDVSn+AFdX2UKGgGaAloD0MIgJ9x4UBI07+UhpRSlGgVSzJoFkdAqAeflZHNHHV9lChoBmgJaA9DCCBB8WPMXdq/lIaUUpRoFUsyaBZHQKgHA4e9zwN1fZQoaAZoCWgPQwi4BrZKsDjlv5SGlFKUaBVLMmgWR0CoBlWqT8pDdX2UKGgGaAloD0MI+13Ymq281r+UhpRSlGgVSzJoFkdAqAYaltTDO3V9lChoBmgJaA9DCJZem42VGOi/lIaUUpRoFUsyaBZHQKgJGJ9iMHd1fZQoaAZoCWgPQwgEjZlEveDiv5SGlFKUaBVLMmgWR0CoCHt/e+EidX2UKGgGaAloD0MIFCAKZkzB1b+UhpRSlGgVSzJoFkdAqAfMaQ3gk3V9lChoBmgJaA9DCC+GcqJdBeG/lIaUUpRoFUsyaBZHQKgHkHJLdvd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (274 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.48085577227175236, "std_reward": 0.23335755546939363, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-10T10:35:41.854093"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:103e29e5aafc79a2be2bdf64e9589281eb7509c2947cdcd8eb614651b0c04a56
|
3 |
+
size 2381
|