ManishW commited on
Commit
79c6739
1 Parent(s): 0fcd486

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - food101
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-base-patch16-224-food101-v1
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: food101
17
+ type: food101
18
+ config: default
19
+ split: train[:5000]
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.924
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # vit-base-patch16-224-food101-v1
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the food101 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2359
35
+ - Accuracy: 0.924
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.0682 | 0.99 | 31 | 0.3073 | 0.908 |
70
+ | 0.0425 | 1.98 | 62 | 0.2663 | 0.915 |
71
+ | 0.0262 | 2.98 | 93 | 0.2173 | 0.928 |
72
+ | 0.0446 | 4.0 | 125 | 0.2195 | 0.937 |
73
+ | 0.0642 | 4.96 | 155 | 0.2359 | 0.924 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.28.0
79
+ - Pytorch 2.0.0+cu118
80
+ - Datasets 2.12.0
81
+ - Tokenizers 0.13.3