File size: 1,433 Bytes
a5b1844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06f6932
4947e52
a5b1844
15be9e0
a5b1844
 
 
2f03484
a5b1844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
tags:
- trl
- sft
- summarization
- transformers
- llama3
- Lora
- QLora
- generated_from_trainer
model-index:
- name: trained_weigths
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->


# llama3-samsum

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the [Samsumg/samsum](https://huggingface.co/datasets/Samsung/samsum) dataset.

## Model description

It is a first version and has to be improved. The challenge is to fine-tune the model using limited resources. The fine tuning was performed downsampling the dataset, under Colab free plan restrictions.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- PEFT 0.12.0
- Transformers 4.43.2
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1