End of training
Browse files
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google/vit-base-patch16-224-in21k
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: emotion_classification_adjusted
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.8625
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# emotion_classification_adjusted
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.8392
|
37 |
+
- Accuracy: 0.8625
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 2e-05
|
57 |
+
- train_batch_size: 32
|
58 |
+
- eval_batch_size: 32
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
+
- lr_scheduler_type: cosine
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 60
|
64 |
+
- label_smoothing_factor: 0.1
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
69 |
+
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
70 |
+
| 2.0787 | 1.0 | 20 | 0.1625 | 2.0753 |
|
71 |
+
| 2.073 | 2.0 | 40 | 0.1187 | 2.0737 |
|
72 |
+
| 2.0599 | 3.0 | 60 | 0.1938 | 2.0585 |
|
73 |
+
| 2.0363 | 4.0 | 80 | 0.1938 | 2.0368 |
|
74 |
+
| 2.0051 | 5.0 | 100 | 0.2625 | 1.9921 |
|
75 |
+
| 1.9348 | 6.0 | 120 | 0.3375 | 1.9185 |
|
76 |
+
| 1.8466 | 7.0 | 140 | 0.375 | 1.8056 |
|
77 |
+
| 1.755 | 8.0 | 160 | 0.4313 | 1.7292 |
|
78 |
+
| 1.676 | 9.0 | 180 | 0.45 | 1.6674 |
|
79 |
+
| 1.6244 | 10.0 | 200 | 0.475 | 1.6237 |
|
80 |
+
| 1.5661 | 11.0 | 220 | 0.5062 | 1.5973 |
|
81 |
+
| 1.5252 | 12.0 | 240 | 0.5 | 1.5262 |
|
82 |
+
| 1.4729 | 13.0 | 260 | 0.55 | 1.5050 |
|
83 |
+
| 1.4203 | 14.0 | 280 | 0.55 | 1.4784 |
|
84 |
+
| 1.364 | 15.0 | 300 | 0.525 | 1.5131 |
|
85 |
+
| 1.3262 | 16.0 | 320 | 0.5125 | 1.4776 |
|
86 |
+
| 1.3102 | 17.0 | 340 | 0.5563 | 1.4200 |
|
87 |
+
| 1.2595 | 18.0 | 360 | 0.5563 | 1.4329 |
|
88 |
+
| 1.2188 | 19.0 | 380 | 0.5375 | 1.4213 |
|
89 |
+
| 1.1991 | 20.0 | 400 | 0.525 | 1.4077 |
|
90 |
+
| 1.1526 | 21.0 | 420 | 0.6062 | 1.3625 |
|
91 |
+
| 1.1225 | 22.0 | 440 | 0.5437 | 1.3745 |
|
92 |
+
| 1.1283 | 23.0 | 460 | 0.5375 | 1.3677 |
|
93 |
+
| 1.0856 | 24.0 | 480 | 0.5625 | 1.3283 |
|
94 |
+
| 1.0559 | 25.0 | 500 | 0.5687 | 1.3440 |
|
95 |
+
| 1.0102 | 26.0 | 520 | 0.5437 | 1.3357 |
|
96 |
+
| 0.9915 | 27.0 | 540 | 0.5813 | 1.3377 |
|
97 |
+
| 0.9807 | 28.0 | 560 | 0.55 | 1.3824 |
|
98 |
+
| 0.9382 | 29.0 | 580 | 0.4938 | 1.4468 |
|
99 |
+
| 0.9857 | 30.0 | 600 | 0.8125 | 0.9923 |
|
100 |
+
| 0.9956 | 31.0 | 620 | 0.7625 | 1.0361 |
|
101 |
+
| 0.9875 | 32.0 | 640 | 0.775 | 1.0310 |
|
102 |
+
| 0.9582 | 33.0 | 660 | 0.7625 | 1.0572 |
|
103 |
+
| 0.9649 | 34.0 | 680 | 0.8063 | 0.9725 |
|
104 |
+
| 0.9099 | 35.0 | 700 | 0.7562 | 1.0355 |
|
105 |
+
| 0.9339 | 36.0 | 720 | 0.7937 | 1.0129 |
|
106 |
+
| 0.9045 | 37.0 | 740 | 0.7562 | 1.0315 |
|
107 |
+
| 0.8903 | 38.0 | 760 | 0.8187 | 0.9923 |
|
108 |
+
| 0.8799 | 39.0 | 780 | 0.7625 | 1.0386 |
|
109 |
+
| 0.8664 | 40.0 | 800 | 0.7438 | 1.0626 |
|
110 |
+
| 0.8351 | 41.0 | 820 | 0.7688 | 0.9885 |
|
111 |
+
| 0.8514 | 42.0 | 840 | 0.7875 | 0.9975 |
|
112 |
+
| 0.857 | 43.0 | 860 | 0.75 | 1.0169 |
|
113 |
+
| 0.8331 | 44.0 | 880 | 0.7937 | 0.9763 |
|
114 |
+
| 0.8093 | 45.0 | 900 | 0.7937 | 0.9645 |
|
115 |
+
| 0.8303 | 46.0 | 920 | 0.8 | 0.9880 |
|
116 |
+
| 0.8077 | 47.0 | 940 | 0.8063 | 1.0094 |
|
117 |
+
| 0.8082 | 48.0 | 960 | 0.7937 | 0.9757 |
|
118 |
+
| 0.8088 | 49.0 | 980 | 0.7438 | 1.0451 |
|
119 |
+
| 0.7985 | 50.0 | 1000 | 0.7875 | 0.9850 |
|
120 |
+
| 0.8013 | 51.0 | 1020 | 0.7688 | 1.0362 |
|
121 |
+
| 0.7882 | 52.0 | 1040 | 0.775 | 1.0007 |
|
122 |
+
| 0.8051 | 53.0 | 1060 | 0.7438 | 1.0314 |
|
123 |
+
| 0.812 | 54.0 | 1080 | 0.8 | 0.9782 |
|
124 |
+
| 0.7895 | 55.0 | 1100 | 0.725 | 1.0396 |
|
125 |
+
| 0.8012 | 56.0 | 1120 | 0.7688 | 0.9894 |
|
126 |
+
| 0.7973 | 57.0 | 1140 | 0.7875 | 0.9981 |
|
127 |
+
| 0.7946 | 58.0 | 1160 | 0.8063 | 0.9754 |
|
128 |
+
| 0.8437 | 59.0 | 1180 | 0.85 | 0.8544 |
|
129 |
+
| 0.8489 | 60.0 | 1200 | 0.7991 | 0.9062 |
|
130 |
+
|
131 |
+
|
132 |
+
### Framework versions
|
133 |
+
|
134 |
+
- Transformers 4.48.3
|
135 |
+
- Pytorch 2.5.1
|
136 |
+
- Datasets 3.2.0
|
137 |
+
- Tokenizers 0.21.0
|