MarfinF commited on
Commit
54e241e
·
verified ·
1 Parent(s): 542c6ed

Update readme.md

Browse files
Files changed (1) hide show
  1. README.md +36 -16
README.md CHANGED
@@ -1,16 +1,36 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - id
5
- - en
6
- metrics:
7
- - accuracy
8
- base_model:
9
- - MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
10
- pipeline_tag: zero-shot-classification
11
- tags:
12
- - Mood
13
- - Emotion
14
- new_version: MarfinF/marfin_emotion
15
- library_name: transformers
16
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Marfin Emotion Detection Model 🎵
2
+
3
+ This model is fine-tuned from `MoritzLaurer/mDeBERTa-v3-base-mnli-xnli` for **emotion detection** tasks based on chat context, specifically optimized for **Indonesian and English**.
4
+
5
+ ## 📝 Use Case
6
+ The model predicts the relationship between user chat input and emotional hypotheses. It helps detect emotions like:
7
+ - `senang` (happy)
8
+ - `sedih` (sad)
9
+ - `marah` (angry)
10
+ - `takut` (fear)
11
+ - `cinta` (love)
12
+
13
+ This is useful for:
14
+ - Emotion-based music recommendation
15
+ - Sentiment analysis in real-time chat apps
16
+ - AI-driven mood detection systems
17
+
18
+ ## 📊 Training Details
19
+ - Base model: mDeBERTa-v3-base-mnli-xnli
20
+ - Fine-tuned with custom NLI-style dataset
21
+ - Metrics: **Accuracy**
22
+
23
+ ## 🏷 Tags
24
+ `Zero-Shot Classification`, `Emotion`, `Mood`, `Indonesian`, `English`
25
+
26
+ ## 📥 Example Usage
27
+ ```python
28
+ from transformers import pipeline
29
+
30
+ classifier = pipeline("zero-shot-classification", model="MarfinF/marfin_emotion")
31
+
32
+ text = "Aku lagi sedih banget hari ini"
33
+ labels = ["senang", "sedih", "marah", "takut", "cinta"]
34
+ result = classifier(text, candidate_labels=labels)
35
+
36
+ print(result)