Update readme.md
Browse files
README.md
CHANGED
@@ -1,16 +1,36 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Marfin Emotion Detection Model 🎵
|
2 |
+
|
3 |
+
This model is fine-tuned from `MoritzLaurer/mDeBERTa-v3-base-mnli-xnli` for **emotion detection** tasks based on chat context, specifically optimized for **Indonesian and English**.
|
4 |
+
|
5 |
+
## 📝 Use Case
|
6 |
+
The model predicts the relationship between user chat input and emotional hypotheses. It helps detect emotions like:
|
7 |
+
- `senang` (happy)
|
8 |
+
- `sedih` (sad)
|
9 |
+
- `marah` (angry)
|
10 |
+
- `takut` (fear)
|
11 |
+
- `cinta` (love)
|
12 |
+
|
13 |
+
This is useful for:
|
14 |
+
- Emotion-based music recommendation
|
15 |
+
- Sentiment analysis in real-time chat apps
|
16 |
+
- AI-driven mood detection systems
|
17 |
+
|
18 |
+
## 📊 Training Details
|
19 |
+
- Base model: mDeBERTa-v3-base-mnli-xnli
|
20 |
+
- Fine-tuned with custom NLI-style dataset
|
21 |
+
- Metrics: **Accuracy**
|
22 |
+
|
23 |
+
## 🏷 Tags
|
24 |
+
`Zero-Shot Classification`, `Emotion`, `Mood`, `Indonesian`, `English`
|
25 |
+
|
26 |
+
## 📥 Example Usage
|
27 |
+
```python
|
28 |
+
from transformers import pipeline
|
29 |
+
|
30 |
+
classifier = pipeline("zero-shot-classification", model="MarfinF/marfin_emotion")
|
31 |
+
|
32 |
+
text = "Aku lagi sedih banget hari ini"
|
33 |
+
labels = ["senang", "sedih", "marah", "takut", "cinta"]
|
34 |
+
result = classifier(text, candidate_labels=labels)
|
35 |
+
|
36 |
+
print(result)
|