--- license: apache-2.0 language: - id - en base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli pipeline_tag: zero-shot-classification tags: - mood - emotion - indonesian - nli metrics: - accuracy library_name: transformers --- # Marfin Emotion Detection Model 🎵 This model is fine-tuned from `MoritzLaurer/mDeBERTa-v3-base-mnli-xnli` for **emotion detection** tasks based on chat context, specifically optimized for **Indonesian and English**. ## 📝 Use Case The model predicts the relationship between user chat input and emotional hypotheses. It helps detect emotions like: - `senang` (happy) - `sedih` (sad) - `marah` (angry) - `takut` (fear) - `cinta` (love) This is useful for: - Emotion-based music recommendation - Sentiment analysis in real-time chat apps - AI-driven mood detection systems ## 📊 Training Details - Base model: mDeBERTa-v3-base-mnli-xnli - Fine-tuned with custom NLI-style dataset - Metrics: **Accuracy** ## 🏷 Tags `Zero-Shot Classification`, `Emotion`, `Mood`, `Indonesian`, `English` ## 📥 Example Usage ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="MarfinF/marfin_emotion") text = "Aku lagi sedih banget hari ini" labels = ["senang", "sedih", "marah", "takut", "cinta"] result = classifier(text, candidate_labels=labels) print(result)