MartialTerran commited on
Commit
c8b58ee
·
verified ·
1 Parent(s): e61ec33

Upload PARITY-calculatingNN_Schmidhuber_V2.0.py

Browse files

# Filename: PARITY-calculatingNN_Supercoded_V2.0.py
# Description: An advanced, highly configurable PyTorch script to train a neural network on the N-bit parity problem.
#
# Supercoding LLM Recode of PARITY-calculatingNN_Schmidhuber_V1.0.py
#
# This version introduces significant enhancements for robust experimentation and analysis:
# - Full Hyperparameterization: All key parameters are exposed via command-line arguments for easy tuning.
# - Flexible Problem Definition: The concept of "parity" can be switched between 'even', 'odd', or 'majority' rule,
# allowing the network to be tested on different but related logical problems.
# - Advanced Visualization: Generates a suite of high-quality plots (saved to disk and shown in popups) inspired
# by analytical scientific scripts, including:
# - Detailed Training History (Loss & Accuracy)
# - Confusion Matrix Heatmap
# - Prediction Margin Distribution Histogram
# - Raw Output vs. True Label Scatter Plot
# - Comprehensive Reporting: Automatically generates a run-specific folder containing the plots, a detailed text report,
# the trained model weights, and a log of hard-to-learn data samples.
# - Interactive Mode: Allows the user to test the trained model with custom binary inputs.

# ==============================================================================

PARITY-calculatingNN_Schmidhuber_V2.0.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Filename: PARITY-calculatingNN_Supercoded_V2.0.py
2
+ # Description: An advanced, highly configurable PyTorch script to train a neural network on the N-bit parity problem.
3
+ #
4
+ # Supercoding LLM Recode of PARITY-calculatingNN_Schmidhuber_V1.0.py
5
+ #
6
+ # This version introduces significant enhancements for robust experimentation and analysis:
7
+ # - Full Hyperparameterization: All key parameters are exposed via command-line arguments for easy tuning.
8
+ # - Flexible Problem Definition: The concept of "parity" can be switched between 'even', 'odd', or 'majority' rule,
9
+ # allowing the network to be tested on different but related logical problems.
10
+ # - Advanced Visualization: Generates a suite of high-quality plots (saved to disk and shown in popups) inspired
11
+ # by analytical scientific scripts, including:
12
+ # - Detailed Training History (Loss & Accuracy)
13
+ # - Confusion Matrix Heatmap
14
+ # - Prediction Margin Distribution Histogram
15
+ # - Raw Output vs. True Label Scatter Plot
16
+ # - Comprehensive Reporting: Automatically generates a run-specific folder containing the plots, a detailed text report,
17
+ # the trained model weights, and a log of hard-to-learn data samples.
18
+ # - Interactive Mode: Allows the user to test the trained model with custom binary inputs.
19
+
20
+ # ==============================================================================
21
+ # === LIBRARY IMPORTS ===
22
+ # ==============================================================================
23
+ print("Initializing... Loading libraries.")
24
+ import torch
25
+ import torch.nn as nn
26
+ import numpy as np
27
+ import matplotlib.pyplot as plt
28
+ import seaborn as sns
29
+ from sklearn.metrics import confusion_matrix, classification_report
30
+ import random
31
+ import os
32
+ import argparse
33
+ import datetime
34
+ import json
35
+
36
+ print("Libraries loaded successfully.\n")
37
+
38
+ # ==============================================================================
39
+ # === CORE FUNCTIONS ===
40
+ # ==============================================================================
41
+
42
+ def setup_directories(args):
43
+ """Creates a unique, timestamped directory for the current run to store all outputs."""
44
+ timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
45
+ run_name = f"run_{timestamp}_N{args.n_bits}_L{args.l_layers}_H{args.hidden_size}_{args.parity_type}"
46
+ base_dir = "parity_nn_results"
47
+ run_dir = os.path.join(base_dir, run_name)
48
+ plots_dir = os.path.join(run_dir, "plots")
49
+ os.makedirs(plots_dir, exist_ok=True)
50
+ print(f"Created output directory: {run_dir}")
51
+ return run_dir, plots_dir
52
+
53
+ def generate_data(num_samples, num_bits, parity_type='even'):
54
+ """
55
+ Generates input data and corresponding labels based on the specified parity rule.
56
+
57
+ Args:
58
+ num_samples (int): The number of data samples to generate.
59
+ num_bits (int): The bit-width of each data sample.
60
+ parity_type (str): The rule for calculating the label.
61
+ 'even': Standard even parity bit (1 if odd number of 1s, 0 if even).
62
+ 'odd': Standard odd parity bit (1 if even number of 1s, 0 if odd).
63
+ 'majority': Label is 1 if the count of 1s > N/2, else 0.
64
+
65
+ Returns:
66
+ tuple: A tuple containing torch tensors for data and labels.
67
+ """
68
+ data = []
69
+ labels = []
70
+ for _ in range(num_samples):
71
+ bits = [random.randint(0, 1) for _ in range(num_bits)]
72
+ sum_of_bits = sum(bits)
73
+
74
+ if parity_type == 'even':
75
+ label = sum_of_bits % 2
76
+ elif parity_type == 'odd':
77
+ label = (sum_of_bits + 1) % 2
78
+ elif parity_type == 'majority':
79
+ label = 1 if sum_of_bits > num_bits / 2 else 0
80
+ else:
81
+ raise ValueError(f"Unknown parity_type: {parity_type}")
82
+
83
+ data.append(bits)
84
+ labels.append(label)
85
+
86
+ return torch.tensor(data, dtype=torch.float32), torch.tensor(labels, dtype=torch.float32).reshape(-1, 1)
87
+
88
+ class ParityNet(nn.Module):
89
+ """A flexible feed-forward neural network model."""
90
+ def __init__(self, input_size, hidden_size, num_hidden_layers, output_size, activation_func='relu'):
91
+ super(ParityNet, self).__init__()
92
+
93
+ if activation_func.lower() == 'relu':
94
+ activation = nn.ReLU()
95
+ elif activation_func.lower() == 'tanh':
96
+ activation = nn.Tanh()
97
+ elif activation_func.lower() == 'leakyrelu':
98
+ activation = nn.LeakyReLU()
99
+ else:
100
+ raise ValueError("Unsupported activation function. Choose 'relu', 'tanh', or 'leakyrelu'.")
101
+
102
+ layers = []
103
+ # Input layer
104
+ layers.append(nn.Linear(input_size, hidden_size))
105
+ layers.append(activation)
106
+ # Hidden layers
107
+ for _ in range(num_hidden_layers - 1):
108
+ layers.append(nn.Linear(hidden_size, hidden_size))
109
+ layers.append(activation)
110
+ # Output layer
111
+ layers.append(nn.Linear(hidden_size, output_size))
112
+ layers.append(nn.Sigmoid()) # For binary classification
113
+
114
+ self.layers = nn.Sequential(*layers)
115
+
116
+ def forward(self, x):
117
+ return self.layers(x)
118
+
119
+ def train_model(model, train_data, train_labels, test_data, test_labels, args, run_dir):
120
+ """Trains the model and logs performance and difficult samples."""
121
+ criterion = nn.BCELoss()
122
+ optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
123
+
124
+ history = {'epoch': [], 'train_loss': [], 'val_acc': []}
125
+ hard_samples = {}
126
+
127
+ print("\n" + "="*50)
128
+ print("=== STARTING TRAINING ===")
129
+ print(f"Epochs: {args.epochs}, LR: {args.learning_rate}, Stop Threshold: {args.min_loss_threshold}")
130
+ print("="*50)
131
+
132
+ # Interactive plot setup
133
+ plt.ion()
134
+ fig, ax = plt.subplots(figsize=(10, 6))
135
+
136
+ for epoch in range(args.epochs):
137
+ model.train()
138
+ outputs = model(train_data)
139
+ loss = criterion(outputs, train_labels)
140
+
141
+ optimizer.zero_grad()
142
+ loss.backward()
143
+ optimizer.step()
144
+
145
+ if (epoch + 1) % args.plot_update_freq == 0:
146
+ model.eval()
147
+ with torch.no_grad():
148
+ val_outputs = model(test_data)
149
+ predicted = (val_outputs > 0.5).float()
150
+ accuracy = (predicted == test_labels).sum().float() / len(test_labels)
151
+
152
+ # Log hard samples (misclassified during this validation check)
153
+ misclassified_mask = (predicted != test_labels).flatten()
154
+ for i, is_misclassified in enumerate(misclassified_mask):
155
+ if is_misclassified:
156
+ sample_str = ''.join(map(str, test_data[i].int().tolist()))
157
+ hard_samples[sample_str] = hard_samples.get(sample_str, 0) + 1
158
+
159
+ history['epoch'].append(epoch + 1)
160
+ history['train_loss'].append(loss.item())
161
+ history['val_acc'].append(accuracy.item())
162
+
163
+ print(f'Epoch [{epoch+1}/{args.epochs}], Loss: {loss.item():.5f}, Validation Accuracy: {accuracy.item():.4f}')
164
+
165
+ # Update real-time plot
166
+ ax.clear()
167
+ ax.plot(history['epoch'], history['train_loss'], 'r-', label='Training Loss')
168
+ ax.set_xlabel(f"Epoch (x{args.plot_update_freq})")
169
+ ax.set_ylabel("Loss", color='r')
170
+ ax.tick_params(axis='y', labelcolor='r')
171
+
172
+ ax2 = ax.twinx()
173
+ ax2.plot(history['epoch'], history['val_acc'], 'b-', label='Validation Accuracy')
174
+ ax2.set_ylabel("Accuracy", color='b')
175
+ ax2.tick_params(axis='y', labelcolor='b')
176
+ ax2.set_ylim(0, 1.05)
177
+
178
+ fig.suptitle("Live Training Progress")
179
+ fig.legend(loc="upper center", bbox_to_anchor=(0.5, 0.95), ncol=2)
180
+ plt.grid(True)
181
+ plt.draw()
182
+ plt.pause(0.01)
183
+
184
+ if loss.item() < args.min_loss_threshold:
185
+ print(f"\nReached minimum loss threshold of {args.min_loss_threshold} at epoch {epoch+1}. Stopping training.")
186
+ break
187
+
188
+ plt.ioff()
189
+ print("\n" + "="*50)
190
+ print("=== TRAINING COMPLETE ===")
191
+ print("="*50 + "\n")
192
+
193
+ # Save hard samples log
194
+ if hard_samples:
195
+ hard_samples_path = os.path.join(run_dir, "hard_samples.json")
196
+ sorted_hard_samples = sorted(hard_samples.items(), key=lambda item: item[1], reverse=True)
197
+ with open(hard_samples_path, 'w') as f:
198
+ json.dump(dict(sorted_hard_samples), f, indent=4)
199
+ print(f"Logged {len(hard_samples)} unique hard-to-learn samples to {hard_samples_path}")
200
+
201
+ return model, history
202
+
203
+
204
+ def evaluate_model(model, test_data, test_labels):
205
+ """Evaluates the final model and returns a dictionary of metrics."""
206
+ model.eval()
207
+ with torch.no_grad():
208
+ outputs = model(test_data)
209
+ predicted = (outputs > 0.5).float()
210
+ accuracy = (predicted == test_labels).sum().float() / len(test_labels)
211
+
212
+ # Separate margins for predictions of 1 and 0
213
+ margins_ones = outputs[predicted == 1] - 0.5
214
+ margins_zeros = 0.5 - outputs[predicted == 0]
215
+
216
+ results = {
217
+ "accuracy": accuracy.item(),
218
+ "raw_outputs": outputs.flatten().numpy(),
219
+ "predictions": predicted.flatten().numpy(),
220
+ "labels": test_labels.flatten().numpy(),
221
+ "margins_ones": margins_ones.numpy(),
222
+ "margins_zeros": margins_zeros.numpy(),
223
+ "conf_matrix": confusion_matrix(test_labels.numpy(), predicted.numpy()),
224
+ "class_report": classification_report(test_labels.numpy(), predicted.numpy(), output_dict=True, zero_division=0)
225
+ }
226
+ return results
227
+
228
+ def generate_plots(history, results, args, plots_dir):
229
+ """Generates and saves a suite of analytical plots."""
230
+ print("Generating and saving analysis plots...")
231
+ plt.style.use('seaborn-v0_8-whitegrid')
232
+
233
+ # --- 1. Training History Plot ---
234
+ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))
235
+ fig.suptitle(f'Training History for N={args.n_bits} {args.parity_type.title()} Parity', fontsize=16)
236
+
237
+ ax1.plot(history['epoch'], history['train_loss'], label='Training Loss', color='crimson')
238
+ ax1.set_title('Training Loss over Epochs')
239
+ ax1.set_xlabel('Epoch')
240
+ ax1.set_ylabel('Binary Cross-Entropy Loss')
241
+ ax1.legend()
242
+
243
+ ax2.plot(history['epoch'], history['val_acc'], label='Validation Accuracy', color='royalblue')
244
+ ax2.set_title('Validation Accuracy over Epochs')
245
+ ax2.set_xlabel('Epoch')
246
+ ax2.set_ylabel('Accuracy')
247
+ ax2.set_ylim(0, 1.05)
248
+ ax2.legend()
249
+
250
+ plt.tight_layout(rect=[0, 0.03, 1, 0.95])
251
+ plt.savefig(os.path.join(plots_dir, "01_training_history.png"))
252
+ plt.show()
253
+
254
+ # --- 2. Confusion Matrix Heatmap ---
255
+ plt.figure(figsize=(8, 6))
256
+ sns.heatmap(results['conf_matrix'], annot=True, fmt='d', cmap='Blues',
257
+ xticklabels=['Predicted 0', 'Predicted 1'],
258
+ yticklabels=['Actual 0', 'Actual 1'])
259
+ plt.title('Confusion Matrix on Test Set', fontsize=14)
260
+ plt.ylabel('True Label')
261
+ plt.xlabel('Predicted Label')
262
+ plt.savefig(os.path.join(plots_dir, "02_confusion_matrix.png"))
263
+ plt.show()
264
+
265
+ # --- 3. Prediction Margin Distribution ---
266
+ plt.figure(figsize=(12, 6))
267
+ plt.hist(results['margins_zeros'], bins=20, alpha=0.7, color='coral', label='Margins for "0" Predictions')
268
+ plt.hist(results['margins_ones'], bins=20, alpha=0.7, color='teal', label='Margins for "1" Predictions')
269
+ plt.title('Distribution of Prediction Margins (Confidence)', fontsize=14)
270
+ plt.xlabel('Margin (Distance from 0.5 threshold)')
271
+ plt.ylabel('Frequency')
272
+ plt.legend()
273
+ plt.savefig(os.path.join(plots_dir, "03_prediction_margins.png"))
274
+ plt.show()
275
+
276
+ # --- 4. Raw Outputs vs. Labels ---
277
+ plt.figure(figsize=(10, 7))
278
+ jitter = np.random.normal(0, 0.015, size=len(results['labels'])) # For better visualization
279
+ colors = ['coral' if l == 0 else 'teal' for l in results['labels']]
280
+ plt.scatter(results['labels'] + jitter, results['raw_outputs'], c=colors, alpha=0.6)
281
+ plt.axhline(y=0.5, color='r', linestyle='--', label='Decision Boundary (0.5)')
282
+ plt.title('Model Raw Output vs. True Labels', fontsize=14)
283
+ plt.xlabel('True Label (with jitter)')
284
+ plt.ylabel('Sigmoid Output (Probability)')
285
+ plt.xticks([0, 1], ['Class 0', 'Class 1'])
286
+ plt.legend()
287
+ plt.savefig(os.path.join(plots_dir, "04_outputs_vs_labels.png"))
288
+ plt.show()
289
+ print("All plots saved.")
290
+
291
+
292
+ def generate_report(args, results, run_dir):
293
+ """Generates and saves a comprehensive text report of the run."""
294
+ report_path = os.path.join(run_dir, "report.txt")
295
+
296
+ # Margin stats
297
+ def get_margin_stats(margins):
298
+ if len(margins) == 0: return "N/A", "N/A", "N/A"
299
+ return f"{np.min(margins):.4f}", f"{np.max(margins):.4f}", f"{np.mean(margins):.4f}"
300
+
301
+ min_m0, max_m0, avg_m0 = get_margin_stats(results['margins_zeros'])
302
+ min_m1, max_m1, avg_m1 = get_margin_stats(results['margins_ones'])
303
+
304
+ tn, fp, fn, tp = results['conf_matrix'].ravel() if results['conf_matrix'].size == 4 else (0,0,0,0)
305
+
306
+ report_content = f"""
307
+ # ==========================================================
308
+ # == PARITY NEURAL NETWORK EXPERIMENT REPORT
309
+ # ==========================================================
310
+ # Run Directory: {run_dir}
311
+ # Report Time: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
312
+ #
313
+ # ==========================================================
314
+ # == HYPERPARAMETERS
315
+ # ==========================================================
316
+ # Problem Type: {args.parity_type.title()}
317
+ # Input Bits (N): {args.n_bits}
318
+ # Hidden Layers (L): {args.l_layers}
319
+ # Neurons per Hidden Layer: {args.hidden_size}
320
+ # Activation Function: {args.activation.upper()}
321
+ #
322
+ # --- Training Configuration ---
323
+ # Epochs: {args.epochs}
324
+ # Learning Rate: {args.learning_rate}
325
+ # Train Samples: {args.num_train_samples}
326
+ # Test Samples: {args.num_test_samples}
327
+ # Loss Stop Threshold: {args.min_loss_threshold}
328
+ #
329
+ # ==========================================================
330
+ # == EVALUATION RESULTS
331
+ # ==========================================================
332
+ # Final Test Accuracy: {results['accuracy']:.4f}
333
+ #
334
+ # --- Confusion Matrix ---
335
+ # True Positives (1->1): {tp}
336
+ # True Negatives (0->0): {tn}
337
+ # False Positives (0->1): {fp}
338
+ # False Negatives (1->0): {fn}
339
+ #
340
+ # --- Prediction Margin Analysis (Confidence) ---
341
+ # | Min | Max | Average
342
+ # ----------------------------------------------------------
343
+ # Margin (Zeros): | {min_m0:<7} | {max_m0:<7} | {avg_m0:<7}
344
+ # Margin (Ones): | {min_m1:<7} | {max_m1:<7} | {avg_m1:<7}
345
+ #
346
+ # ==========================================================
347
+ # == CONCLUSION
348
+ # ==========================================================
349
+ # The model was trained to solve the {args.n_bits}-bit '{args.parity_type}' problem.
350
+ # With a final test accuracy of {results['accuracy']:.2%}, the network has demonstrated
351
+ # {'a high degree of success' if results['accuracy'] > 0.95 else 'a moderate level of success' if results['accuracy'] > 0.7 else 'difficulty'}
352
+ # in learning the underlying logical rule.
353
+ #
354
+ # The margin analysis indicates the model's confidence. Larger average margins
355
+ # suggest a more robust and decisive model. The generated plots provide
356
+ # further visual insight into the training process and final performance.
357
+ #
358
+ # This experiment explores the capability of a simple Feed-Forward Network
359
+ # to learn complex, non-linear functions like parity, a task often cited
360
+ # as a challenge for non-recurrent architectures but clearly achievable
361
+ # with sufficient network capacity and training.
362
+ #
363
+ """
364
+ print("\n" + report_content)
365
+ with open(report_path, "w") as f:
366
+ f.write(report_content)
367
+ print(f"Report saved to {report_path}")
368
+
369
+ def user_inference_loop(model, args):
370
+ """An interactive loop for the user to test the model. replicate the label-calculation logic directly within the user_inference_loop. This isolates the calculation and uses the user's provided bit string, fixing the crash and ensuring the "True Label" is accurate for the given input. With this correction, the interactive mode will now function as intended, correctly comparing the model's prediction against the true calculated label for your input. System integrity restored."""
371
+ print("\n" + "="*50)
372
+ print("=== INTERACTIVE INFERENCE MODE ===")
373
+ print(f"Enter a {args.n_bits}-bit binary string (e.g., {'10101'[:args.n_bits]}) or 'q' to quit.")
374
+ print("="*50)
375
+
376
+ model.eval()
377
+ while True:
378
+ user_input = input(f"Input ({args.n_bits} bits) > ")
379
+ if user_input.lower() == 'q':
380
+ break
381
+
382
+ if len(user_input) != args.n_bits or not all(c in '01' for c in user_input):
383
+ print(f"Error: Please enter exactly {args.n_bits} bits (0s and 1s).")
384
+ continue
385
+
386
+ bits = [int(c) for c in user_input]
387
+ data_tensor = torch.tensor(bits, dtype=torch.float32).reshape(1, -1)
388
+
389
+ with torch.no_grad():
390
+ output = model(data_tensor)
391
+ prediction = (output > 0.5).int().item()
392
+ confidence = output.item()
393
+
394
+ print(f" Model Output: {confidence:.4f}")
395
+ print(f" -> Predicted Label: {prediction}")
396
+
397
+ # --- FIX START ---
398
+ # The original code incorrectly tried to pass the user's data back into
399
+ # the generate_data function. The fix is to calculate the true label
400
+ # directly here using the same logic from the data generation process.
401
+
402
+ sum_of_bits = sum(bits)
403
+ true_label = -1 # Default/error value
404
+
405
+ if args.parity_type == 'even':
406
+ true_label = sum_of_bits % 2
407
+ elif args.parity_type == 'odd':
408
+ true_label = (sum_of_bits + 1) % 2
409
+ elif args.parity_type == 'majority':
410
+ true_label = 1 if sum_of_bits > args.n_bits / 2 else 0
411
+
412
+ # --- FIX END ---
413
+
414
+ print(f" -> True Label ({args.parity_type}): {true_label} {'(Correct)' if prediction == true_label else '(Incorrect)'}\n")
415
+
416
+ # ==============================================================================
417
+ # === MAIN EXECUTION BLOCK ===
418
+ # ==============================================================================
419
+
420
+ if __name__ == '__main__':
421
+ parser = argparse.ArgumentParser(description="Train a Neural Network for the N-Bit Parity Problem.")
422
+
423
+ # --- Model Architecture ---
424
+ parser.add_argument('-n', '--n_bits', type=int, default=5, help="Number of input bits (N).")
425
+ parser.add_argument('-l', '--l_layers', type=int, default=2, help="Number of hidden layers (L).")
426
+ parser.add_argument('-hs', '--hidden_size', type=int, default=10, help="Number of neurons per hidden layer.")
427
+ parser.add_argument('-a', '--activation', type=str, default='relu', choices=['relu', 'tanh', 'leakyrelu'], help="Activation function for hidden layers.")
428
+
429
+ # --- Training Parameters ---
430
+ parser.add_argument('-e', '--epochs', type=int, default=10000, help="Maximum number of training epochs.")
431
+ parser.add_argument('-lr', '--learning_rate', type=float, default=0.003, help="Optimizer learning rate.")
432
+ parser.add_argument('-loss', '--min_loss_threshold', type=float, default=0.01, help="Loss threshold to stop training early.")
433
+ parser.add_argument('-puf', '--plot_update_freq', type=int, default=100, help="Frequency (in epochs) to update the live plot.")
434
+
435
+ # --- Data and Problem Type ---
436
+ parser.add_argument('-pt', '--parity_type', type=str, default='even', choices=['even', 'odd', 'majority'], help="The logical rule to learn.")
437
+ parser.add_argument('-nts', '--num_train_samples', type=int, default=2000, help="Number of samples for the training dataset.")
438
+ parser.add_argument('-ntests', '--num_test_samples', type=int, default=500, help="Number of samples for the test dataset.")
439
+
440
+ args = parser.parse_args()
441
+
442
+ # 1. Setup
443
+ run_dir, plots_dir = setup_directories(args)
444
+ # Save args for reproducibility
445
+ with open(os.path.join(run_dir, 'hyperparameters.json'), 'w') as f:
446
+ json.dump(vars(args), f, indent=4)
447
+
448
+ # 2. Generate Data
449
+ print(f"\nGenerating {args.num_train_samples} training and {args.num_test_samples} test samples for {args.n_bits}-bit '{args.parity_type}' parity...")
450
+ train_data, train_labels = generate_data(args.num_train_samples, args.n_bits, args.parity_type)
451
+ test_data, test_labels = generate_data(args.num_test_samples, args.n_bits, args.parity_type)
452
+ print("Data generation complete.")
453
+
454
+ # 3. Create Model
455
+ model = ParityNet(args.n_bits, args.hidden_size, args.l_layers, 1, args.activation)
456
+ print("\nModel Architecture:")
457
+ print(model)
458
+
459
+ # 4. Train Model
460
+ trained_model, history = train_model(model, train_data, train_labels, test_data, test_labels, args, run_dir)
461
+
462
+ # 5. Save Model Weights
463
+ model_path = os.path.join(run_dir, f"parity_nn_N{args.n_bits}_{args.parity_type}.pth")
464
+ torch.save(trained_model.state_dict(), model_path)
465
+ print(f"Trained model weights saved to: {model_path}")
466
+
467
+ # 6. Evaluate and Report
468
+ if len(history['epoch']) > 0: # Ensure training ran for at least one update cycle
469
+ final_results = evaluate_model(trained_model, test_data, test_labels)
470
+ generate_report(args, final_results, run_dir)
471
+ generate_plots(history, final_results, args, plots_dir)
472
+ else:
473
+ print("\nTraining was too short to generate a full report and plots.")
474
+
475
+ # 7. Interactive Mode
476
+ user_inference_loop(trained_model, args)
477
+
478
+ print("\nSupercoding LLM task complete. System returning to normal operation.")