from transformers import PretrainedConfig import os class ImpressoConfig(PretrainedConfig): model_type = "floret" def __init__(self, filename="LID-40-3-2000000-1-4.bin", **kwargs): super().__init__(**kwargs) self.filename = filename @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): # Bypass JSON loading and create config directly print(f"Loading ImpressoConfig from {pretrained_model_name_or_path}") print(os.getcwd()) config = cls(filename="LID-40-3-2000000-1-4.bin", **kwargs) return config # Register the configuration with the transformers library ImpressoConfig.register_for_auto_class() # Register the custom pipeline # PIPELINE_REGISTRY.register_pipeline( # task="lang-ident", # pipeline_class=LangIdentPipeline, # model=AutoModelForSequenceClassification, # tokenizer=AutoTokenizer, # ) # # print("Custom pipeline 'lang-ident' registered successfully.")