End of training
Browse files- README.md +23 -21
- all_results.json +31 -0
- eval_results.json +26 -0
- train_results.json +8 -0
- trainer_state.json +0 -0
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
library_name: transformers
|
3 |
base_model: google/mobilenet_v2_1.0_224
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
@@ -18,28 +20,28 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# mobilenetv2-typecoffee-6
|
20 |
|
21 |
-
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss:
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Precision Durariadorio 16x16: 0.
|
29 |
-
- Recall Durariadorio 16x16: 0.
|
30 |
-
- F1 Durariadorio 16x16: 0.
|
31 |
-
- Precision Mole 16x16: 0.
|
32 |
-
- Recall Mole 16x16: 0.
|
33 |
-
- F1 Mole 16x16: 0.
|
34 |
-
- Precision Quebrado 16x16: 0.
|
35 |
-
- Recall Quebrado 16x16: 0.
|
36 |
-
- F1 Quebrado 16x16: 0.
|
37 |
-
- Precision Riadorio 16x16: 0.
|
38 |
-
- Recall Riadorio 16x16: 0.
|
39 |
-
- F1 Riadorio 16x16: 0.
|
40 |
-
- Precision Riofechado 16x16: 0.
|
41 |
-
- Recall Riofechado 16x16: 0.
|
42 |
-
- F1 Riofechado 16x16: 0.
|
43 |
|
44 |
## Model description
|
45 |
|
|
|
2 |
library_name: transformers
|
3 |
base_model: google/mobilenet_v2_1.0_224
|
4 |
tags:
|
5 |
+
- image-classification
|
6 |
+
- vision
|
7 |
- generated_from_trainer
|
8 |
metrics:
|
9 |
- accuracy
|
|
|
20 |
|
21 |
# mobilenetv2-typecoffee-6
|
22 |
|
23 |
+
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the Master-Rapha7/TypeCoffee_16x16 dataset.
|
24 |
It achieves the following results on the evaluation set:
|
25 |
+
- Loss: 0.9977
|
26 |
+
- Accuracy: 0.6484
|
27 |
+
- Precision: 0.6521
|
28 |
+
- Recall: 0.6499
|
29 |
+
- F1: 0.6481
|
30 |
+
- Precision Durariadorio 16x16: 0.6117
|
31 |
+
- Recall Durariadorio 16x16: 0.6476
|
32 |
+
- F1 Durariadorio 16x16: 0.6291
|
33 |
+
- Precision Mole 16x16: 0.6444
|
34 |
+
- Recall Mole 16x16: 0.7439
|
35 |
+
- F1 Mole 16x16: 0.6906
|
36 |
+
- Precision Quebrado 16x16: 0.7168
|
37 |
+
- Recall Quebrado 16x16: 0.7635
|
38 |
+
- F1 Quebrado 16x16: 0.7394
|
39 |
+
- Precision Riadorio 16x16: 0.5405
|
40 |
+
- Recall Riadorio 16x16: 0.5049
|
41 |
+
- F1 Riadorio 16x16: 0.5221
|
42 |
+
- Precision Riofechado 16x16: 0.7474
|
43 |
+
- Recall Riofechado 16x16: 0.5896
|
44 |
+
- F1 Riofechado 16x16: 0.6591
|
45 |
|
46 |
## Model description
|
47 |
|
all_results.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"eval_accuracy": 0.6484254001032524,
|
4 |
+
"eval_f1": 0.6480692080859816,
|
5 |
+
"eval_f1_DuraRiadoRio_16x16": 0.6291376765760067,
|
6 |
+
"eval_f1_Mole_16x16": 0.6905721192586624,
|
7 |
+
"eval_f1_Quebrado_16x16": 0.739386296763346,
|
8 |
+
"eval_f1_RiadoRio_16x16": 0.5221088435374149,
|
9 |
+
"eval_f1_RioFechado_16x16": 0.6591411042944785,
|
10 |
+
"eval_loss": 0.9976791739463806,
|
11 |
+
"eval_precision": 0.6521451197878377,
|
12 |
+
"eval_precision_DuraRiadoRio_16x16": 0.6117261172611727,
|
13 |
+
"eval_precision_Mole_16x16": 0.6443609022556391,
|
14 |
+
"eval_precision_Quebrado_16x16": 0.7167889160554197,
|
15 |
+
"eval_precision_RiadoRio_16x16": 0.5404929577464789,
|
16 |
+
"eval_precision_RioFechado_16x16": 0.7473567056204786,
|
17 |
+
"eval_recall": 0.6498868731997905,
|
18 |
+
"eval_recall_DuraRiadoRio_16x16": 0.6475694444444444,
|
19 |
+
"eval_recall_Mole_16x16": 0.7439236111111112,
|
20 |
+
"eval_recall_Quebrado_16x16": 0.7634548611111112,
|
21 |
+
"eval_recall_RiadoRio_16x16": 0.5049342105263158,
|
22 |
+
"eval_recall_RioFechado_16x16": 0.5895522388059702,
|
23 |
+
"eval_runtime": 45.1355,
|
24 |
+
"eval_samples_per_second": 257.491,
|
25 |
+
"eval_steps_per_second": 16.107,
|
26 |
+
"total_flos": 2.446223378542756e+19,
|
27 |
+
"train_loss": 0.8178866318153334,
|
28 |
+
"train_runtime": 92994.6535,
|
29 |
+
"train_samples_per_second": 99.983,
|
30 |
+
"train_steps_per_second": 6.25
|
31 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"eval_accuracy": 0.6484254001032524,
|
4 |
+
"eval_f1": 0.6480692080859816,
|
5 |
+
"eval_f1_DuraRiadoRio_16x16": 0.6291376765760067,
|
6 |
+
"eval_f1_Mole_16x16": 0.6905721192586624,
|
7 |
+
"eval_f1_Quebrado_16x16": 0.739386296763346,
|
8 |
+
"eval_f1_RiadoRio_16x16": 0.5221088435374149,
|
9 |
+
"eval_f1_RioFechado_16x16": 0.6591411042944785,
|
10 |
+
"eval_loss": 0.9976791739463806,
|
11 |
+
"eval_precision": 0.6521451197878377,
|
12 |
+
"eval_precision_DuraRiadoRio_16x16": 0.6117261172611727,
|
13 |
+
"eval_precision_Mole_16x16": 0.6443609022556391,
|
14 |
+
"eval_precision_Quebrado_16x16": 0.7167889160554197,
|
15 |
+
"eval_precision_RiadoRio_16x16": 0.5404929577464789,
|
16 |
+
"eval_precision_RioFechado_16x16": 0.7473567056204786,
|
17 |
+
"eval_recall": 0.6498868731997905,
|
18 |
+
"eval_recall_DuraRiadoRio_16x16": 0.6475694444444444,
|
19 |
+
"eval_recall_Mole_16x16": 0.7439236111111112,
|
20 |
+
"eval_recall_Quebrado_16x16": 0.7634548611111112,
|
21 |
+
"eval_recall_RiadoRio_16x16": 0.5049342105263158,
|
22 |
+
"eval_recall_RioFechado_16x16": 0.5895522388059702,
|
23 |
+
"eval_runtime": 45.1355,
|
24 |
+
"eval_samples_per_second": 257.491,
|
25 |
+
"eval_steps_per_second": 16.107
|
26 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"total_flos": 2.446223378542756e+19,
|
4 |
+
"train_loss": 0.8178866318153334,
|
5 |
+
"train_runtime": 92994.6535,
|
6 |
+
"train_samples_per_second": 99.983,
|
7 |
+
"train_steps_per_second": 6.25
|
8 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|