Master-Rapha7 commited on
Commit
5e7cb09
·
verified ·
1 Parent(s): f88deff

End of training

Browse files
Files changed (5) hide show
  1. README.md +23 -21
  2. all_results.json +31 -0
  3. eval_results.json +26 -0
  4. train_results.json +8 -0
  5. trainer_state.json +0 -0
README.md CHANGED
@@ -2,6 +2,8 @@
2
  library_name: transformers
3
  base_model: google/mobilenet_v2_1.0_224
4
  tags:
 
 
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
@@ -18,28 +20,28 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # mobilenetv2-typecoffee-6
20
 
21
- This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.8486
24
- - Accuracy: 0.6184
25
- - Precision: 0.6367
26
- - Recall: 0.6194
27
- - F1: 0.6204
28
- - Precision Durariadorio 16x16: 0.5979
29
- - Recall Durariadorio 16x16: 0.5512
30
- - F1 Durariadorio 16x16: 0.5736
31
- - Precision Mole 16x16: 0.5639
32
- - Recall Mole 16x16: 0.7756
33
- - F1 Mole 16x16: 0.6530
34
- - Precision Quebrado 16x16: 0.8543
35
- - Recall Quebrado 16x16: 0.6081
36
- - F1 Quebrado 16x16: 0.7104
37
- - Precision Riadorio 16x16: 0.5330
38
- - Recall Riadorio 16x16: 0.5312
39
- - F1 Riadorio 16x16: 0.5321
40
- - Precision Riofechado 16x16: 0.6344
41
- - Recall Riofechado 16x16: 0.6308
42
- - F1 Riofechado 16x16: 0.6326
43
 
44
  ## Model description
45
 
 
2
  library_name: transformers
3
  base_model: google/mobilenet_v2_1.0_224
4
  tags:
5
+ - image-classification
6
+ - vision
7
  - generated_from_trainer
8
  metrics:
9
  - accuracy
 
20
 
21
  # mobilenetv2-typecoffee-6
22
 
23
+ This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the Master-Rapha7/TypeCoffee_16x16 dataset.
24
  It achieves the following results on the evaluation set:
25
+ - Loss: 0.9977
26
+ - Accuracy: 0.6484
27
+ - Precision: 0.6521
28
+ - Recall: 0.6499
29
+ - F1: 0.6481
30
+ - Precision Durariadorio 16x16: 0.6117
31
+ - Recall Durariadorio 16x16: 0.6476
32
+ - F1 Durariadorio 16x16: 0.6291
33
+ - Precision Mole 16x16: 0.6444
34
+ - Recall Mole 16x16: 0.7439
35
+ - F1 Mole 16x16: 0.6906
36
+ - Precision Quebrado 16x16: 0.7168
37
+ - Recall Quebrado 16x16: 0.7635
38
+ - F1 Quebrado 16x16: 0.7394
39
+ - Precision Riadorio 16x16: 0.5405
40
+ - Recall Riadorio 16x16: 0.5049
41
+ - F1 Riadorio 16x16: 0.5221
42
+ - Precision Riofechado 16x16: 0.7474
43
+ - Recall Riofechado 16x16: 0.5896
44
+ - F1 Riofechado 16x16: 0.6591
45
 
46
  ## Model description
47
 
all_results.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 100.0,
3
+ "eval_accuracy": 0.6484254001032524,
4
+ "eval_f1": 0.6480692080859816,
5
+ "eval_f1_DuraRiadoRio_16x16": 0.6291376765760067,
6
+ "eval_f1_Mole_16x16": 0.6905721192586624,
7
+ "eval_f1_Quebrado_16x16": 0.739386296763346,
8
+ "eval_f1_RiadoRio_16x16": 0.5221088435374149,
9
+ "eval_f1_RioFechado_16x16": 0.6591411042944785,
10
+ "eval_loss": 0.9976791739463806,
11
+ "eval_precision": 0.6521451197878377,
12
+ "eval_precision_DuraRiadoRio_16x16": 0.6117261172611727,
13
+ "eval_precision_Mole_16x16": 0.6443609022556391,
14
+ "eval_precision_Quebrado_16x16": 0.7167889160554197,
15
+ "eval_precision_RiadoRio_16x16": 0.5404929577464789,
16
+ "eval_precision_RioFechado_16x16": 0.7473567056204786,
17
+ "eval_recall": 0.6498868731997905,
18
+ "eval_recall_DuraRiadoRio_16x16": 0.6475694444444444,
19
+ "eval_recall_Mole_16x16": 0.7439236111111112,
20
+ "eval_recall_Quebrado_16x16": 0.7634548611111112,
21
+ "eval_recall_RiadoRio_16x16": 0.5049342105263158,
22
+ "eval_recall_RioFechado_16x16": 0.5895522388059702,
23
+ "eval_runtime": 45.1355,
24
+ "eval_samples_per_second": 257.491,
25
+ "eval_steps_per_second": 16.107,
26
+ "total_flos": 2.446223378542756e+19,
27
+ "train_loss": 0.8178866318153334,
28
+ "train_runtime": 92994.6535,
29
+ "train_samples_per_second": 99.983,
30
+ "train_steps_per_second": 6.25
31
+ }
eval_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 100.0,
3
+ "eval_accuracy": 0.6484254001032524,
4
+ "eval_f1": 0.6480692080859816,
5
+ "eval_f1_DuraRiadoRio_16x16": 0.6291376765760067,
6
+ "eval_f1_Mole_16x16": 0.6905721192586624,
7
+ "eval_f1_Quebrado_16x16": 0.739386296763346,
8
+ "eval_f1_RiadoRio_16x16": 0.5221088435374149,
9
+ "eval_f1_RioFechado_16x16": 0.6591411042944785,
10
+ "eval_loss": 0.9976791739463806,
11
+ "eval_precision": 0.6521451197878377,
12
+ "eval_precision_DuraRiadoRio_16x16": 0.6117261172611727,
13
+ "eval_precision_Mole_16x16": 0.6443609022556391,
14
+ "eval_precision_Quebrado_16x16": 0.7167889160554197,
15
+ "eval_precision_RiadoRio_16x16": 0.5404929577464789,
16
+ "eval_precision_RioFechado_16x16": 0.7473567056204786,
17
+ "eval_recall": 0.6498868731997905,
18
+ "eval_recall_DuraRiadoRio_16x16": 0.6475694444444444,
19
+ "eval_recall_Mole_16x16": 0.7439236111111112,
20
+ "eval_recall_Quebrado_16x16": 0.7634548611111112,
21
+ "eval_recall_RiadoRio_16x16": 0.5049342105263158,
22
+ "eval_recall_RioFechado_16x16": 0.5895522388059702,
23
+ "eval_runtime": 45.1355,
24
+ "eval_samples_per_second": 257.491,
25
+ "eval_steps_per_second": 16.107
26
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 100.0,
3
+ "total_flos": 2.446223378542756e+19,
4
+ "train_loss": 0.8178866318153334,
5
+ "train_runtime": 92994.6535,
6
+ "train_samples_per_second": 99.983,
7
+ "train_steps_per_second": 6.25
8
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff