Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,102 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
[
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
+
license: mit
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
base_model:
|
| 5 |
+
- Qwen/Qwen1.5-1.8B
|
| 6 |
+
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
| 7 |
library_name: transformers
|
| 8 |
+
tags:
|
| 9 |
+
- mergekit
|
| 10 |
+
- merged-model
|
| 11 |
+
- qwen
|
| 12 |
+
- deepseek
|
| 13 |
+
- language-model
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# 🤖 Qwen1.5-DeepSeek-Merge: Uniting Precision & Efficiency
|
| 17 |
+
|
| 18 |
+
## 📌 Overview
|
| 19 |
+
**Qwen1.5-DeepSeek-Merge** is an **experimental hybrid model** merging the capabilities of **Qwen/Qwen1.5-1.8B** and **DeepSeek-R1-Distill-Qwen-1.5B** using the **Linear Merge** method via **MergeKit**. This fusion aims to capture the strengths of both models—balancing linguistic nuance with distilled performance.
|
| 20 |
+
|
| 21 |
+
🔗 **Created by**: [Matteo Khan]
|
| 22 |
+
🎓 **Affiliation**: Apprentice at TW3 Partners (Generative AI Research)
|
| 23 |
+
📍 **License**: MIT
|
| 24 |
+
|
| 25 |
+
🔗 [Connect on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/)
|
| 26 |
+
🔗 [Model on Hugging Face](https://huggingface.co/MatteoKhan/Qwen1.5-DeepSeek-Merge)
|
| 27 |
+
|
| 28 |
+
## 🧠 Model Details
|
| 29 |
+
- **Model Type**: Merged Language Model
|
| 30 |
+
- **Parent Models**:
|
| 31 |
+
- [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B)
|
| 32 |
+
- [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B)
|
| 33 |
+
- **Merge Method**: Linear Merge (via MergeKit)
|
| 34 |
+
- **Precision**: bfloat16
|
| 35 |
+
|
| 36 |
+
## 🎯 Intended Use
|
| 37 |
+
This model is primarily intended for **research and experimentation** in language model merging. Potential applications include:
|
| 38 |
+
- ✅ General Text Generation
|
| 39 |
+
- ✅ Dialogue Systems
|
| 40 |
+
- ✅ Prompt Engineering Research
|
| 41 |
+
- ✅ Evaluation of Merging Strategies
|
| 42 |
+
|
| 43 |
+
## ⚠️ Limitations & Considerations
|
| 44 |
+
While this model may exhibit improved behavior in some cases, it also inherits limitations from its parent models:
|
| 45 |
+
- ❌ May generate hallucinated or unverified information
|
| 46 |
+
- ⚠️ Susceptible to biases or offensive outputs
|
| 47 |
+
- 🔀 Merge effects may introduce unexpected behaviors
|
| 48 |
+
- 📉 Task-specific performance not guaranteed
|
| 49 |
+
|
| 50 |
+
## 🔬 Merging Process & Configuration
|
| 51 |
+
|
| 52 |
+
This model is a **merge**, not a newly fine-tuned one. Below is the exact configuration used:
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
hf_repo_name = "MatteoKhan/Qwen1.5-DeepSeek-Merge"
|
| 56 |
+
|
| 57 |
+
config = {
|
| 58 |
+
"merge_method": "linear",
|
| 59 |
+
"dtype": torch.bfloat16,
|
| 60 |
+
"models": [
|
| 61 |
+
{
|
| 62 |
+
"model": "Qwen/Qwen1.5-1.8B",
|
| 63 |
+
"parameters": {
|
| 64 |
+
"weight": 0.5
|
| 65 |
+
}
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
| 69 |
+
"parameters": {
|
| 70 |
+
"weight": 0.5
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
],
|
| 74 |
+
"parameters": {
|
| 75 |
+
"normalize": True
|
| 76 |
+
},
|
| 77 |
+
"layers": [
|
| 78 |
+
{"pattern": "model."}
|
| 79 |
+
]
|
| 80 |
+
}
|
| 81 |
+
📊 No formal benchmark yet—community testing is welcome!
|
| 82 |
+
|
| 83 |
+
🌱 Environmental Impact
|
| 84 |
+
By merging pre-trained models instead of training from scratch, this approach saves substantial compute and reduces carbon emissions.
|
| 85 |
+
|
| 86 |
+
🚀 How to Use
|
| 87 |
+
python
|
| 88 |
+
Copier
|
| 89 |
+
Modifier
|
| 90 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 91 |
+
|
| 92 |
+
model_name = "MatteoKhan/Qwen1.5-DeepSeek-Merge"
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 94 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
|
| 95 |
+
|
| 96 |
+
prompt = "What are the implications of quantum computing on AI?"
|
| 97 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 98 |
+
outputs = model.generate(**inputs, max_length=200)
|
| 99 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 100 |
+
print(response)
|
| 101 |
+
|
| 102 |
+
📬 Questions or feedback? Contact via Hugging Face or LinkedIn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|