Token Classification
Transformers
Safetensors
xlm-roberta
File size: 6,123 Bytes
a794111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a334f
a794111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9d91
a794111
e5a334f
a794111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9d91
a794111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: cc-by-4.0
datasets:
- masakhane/InjongoIntent
language:
- en
- am
- ee
- ha
- ig
- rw
- ln
- om
- sn
- sot
- sw
- tw
- wo
- xh
- yo
- zu
- lg
base_model:
- Davlan/afro-xlmr-large-76L
pipeline_tag: token-classification
library_name: transformers
---

# INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages

## Evaluation Comparison

### Intent Detection (Accuracy)

#### In-language training

| Model | eng | amh | ewe | hau | ibo | kin | lin | lug | orm | sna | sot | swa | twi | wol | xho | yor | zul | **AVG** |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| mT5-Large | 80.5 | 91.5 | 77.3 | 94.6 | 92.9 | 83.7 | 91.3 | 83.3 | 73.3 | 92.6 | 80.2 | 95.8 | 85.3 | 91.6 | 95.8 | 90.9 | 82.4 | 87.7±4.1 |
| AfriTeVa V2 (T5) | 81.6 | 93.2 | 84.4 | **98.9** | 95.7 | 87.8 | 91.6 | 86.8 | 86.6 | 94.6 | 85.7 | 96.8 | 87.1 | 94.0 | 97.3 | 97.0 | 89.2 | 91.7±2.7 |
| NLLB LLM2Vec | **88.4** | 94.2 | 87.8 | 98.3 | **96.8** | 89.2 | **95.2** | **93.2** | 86.2 | **96.1** | 87.3 | 97.4 | 93.5 | 95.6 | **97.5** | 97.3 | 89.1 | 93.4±2.3 |
| XLM-RoBERTa | 83.5 | 92.9 | 77.9 | 96.0 | 88.8 | 69.6 | 90.5 | 78.9 | 75.0 | 83.8 | 76.0 | 96.7 | 79.5 | 90.2 | 89.6 | 92.6 | 74.7 | 84.5±4.9 |
| AfriBERTa V2 | 74.2 | 91.2 | 78.3 | 98.2 | 93.8 | 83.1 | 91.0 | 83.8 | 78.8 | 89.5 | 81.9 | 96.0 | 83.2 | 92.3 | 94.4 | 95.0 | 86.7 | 88.6±3.5 |
| AfroXLMR | 84.1 | 95.3 | 84.6 | 98.3 | 96.0 | 88.2 | 93.3 | 85.2 | 88.3 | 95.3 | 85.5 | 97.8 | 88.8 | 95.8 | 97.3 | 96.1 | 89.0 | 92.2±3.0 |
| **AfroXLMR 76L** | 84.5 | **95.5** | **90.4** | 98.7 | 96.3 | **89.4** | 94.6 | 91.3 | **88.3** | 95.1 | **86.8** | **98.1** | **93.6** | **96.2** | 96.9 | **97.7** | **89.8** | **93.7±2.1** |

#### Multi-lingual training

| Model | eng | amh | ewe | hau | ibo | kin | lin | lug | orm | sna | sot | swa | twi | wol | xho | yor | zul | **AVG** |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| **[AfroXLMR-large-76L-Injongo-intent](https://huggingface.co/McGill-NLP/AfroXLMR-large-76L-Injongo-intent)** | 89.0 | 96.0 | 92.6 | 99.2 | 96.6 | 87.7 | 95.9 | 92.3 | 92.9 | 96.5 | 87.6 | 97.8 | 94.2 | 97.1 | 97.3 | 97.9 | 89.2 | **94.4±2.0** |

### Slot Filling (F1)

#### In-language training

| Model | eng | amh | ewe | hau | ibo | kin | lin | lug | orm | sna | sot | swa | twi | wol | xho | yor | zul | **AVG** |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| mT5-Large | 73.7 | 80.9 | 71.6 | 89.4 | 80.5 | 74.2 | 82.6 | 78.9 | 72.1 | 81.1 | 74.7 | 88.1 | 79.0 | 76.9 | 88.4 | 78.9 | 68.3 | 79.1±3.7 |
| AfriTeVa V2 (T5) | 73.6 | 80.9 | 74.5 | 93.8 | 79.9 | 76.6 | 87.1 | 85.2 | 79.0 | 82.1 | **77.5** | 88.9 | 84.0 | 79.0 | 90.0 | 87.2 | 71.2 | 82.3±3.3 |
| NLLB LLM2Vec | 74.6 | 82.4 | 80.5 | 93.6 | 78.1 | 70.1 | 84.8 | 86.6 | 80.8 | 81.4 | 74.8 | 85.7 | 85.7 | 78.3 | 88.0 | 85.0 | 78.3 | 82.1±3.1 |
| XLM-RoBERTa | 77.9 | 84.8 | 79.9 | 93.9 | 76.6 | 69.3 | 86.3 | 83.8 | 83.8 | 79.3 | 71.7 | 88.7 | 84.2 | 79.3 | 89.1 | 83.9 | 79.4 | 82.1±3.5 |
| AfriBERTa V2 | 70.7 | 82.2 | 77.9 | 93.7 | 78.3 | 73.8 | 84.4 | 84.1 | 81.0 | 81.8 | 73.5 | 87.6 | 81.9 | 78.3 | 88.5 | 86.2 | 79.6 | 82.1±2.9 |
| AfroXLMR | **79.0** | 86.2 | 81.6 | **95.1** | **82.0** | 76.3 | 87.1 | 88.5 | 84.9 | **84.9** | **77.5** | **90.2** | 85.5 | **81.7** | **91.1** | 87.3 | **82.5** | 85.2±2.7 |
| **AfroXLMR 76L** | 78.7 | **86.3** | **84.5** | 94.3 | 81.9 | **76.7** | **88.0** | **88.8** | **85.5** | **84.9** | 77.4 | **90.2** | **89.8** | 81.3 | 90.5 | **88.1** | 81.3 | **85.6±2.7** |

#### Multi-lingual training

| Model | eng | amh | ewe | hau | ibo | kin | lin | lug | orm | sna | sot | swa | twi | wol | xho | yor | zul | **AVG** |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| **[AfroXLMR-large-76L-Injongo-slot](https://huggingface.co/McGill-NLP/AfroXLMR-large-76L-Injongo-slot)** | 82.4 | 88.2 | 87.0 | 96.3 | 84.0 | 79.3 | 90.3 | 89.2 | 87.2 | 86.1 | 80.4 | 90.5 | 90.3 | 83.3 | 91.8 | 90.2 | 83.3 | **87.3±2.4** |

## Language Codes

- **eng**: English
- **amh**: Amharic  
- **ewe**: Ewe
- **hau**: Hausa
- **ibo**: Igbo
- **kin**: Kinyarwanda
- **lin**: Lingala
- **lug**: Luganda
- **orm**: Oromo
- **sna**: Shona
- **sot**: Sesotho
- **swa**: Swahili
- **twi**: Twi
- **wol**: Wolof
- **xho**: Xhosa
- **yor**: Yoruba
- **zul**: Zulu

## Notes

- **Bold** values indicate the best performing scores in each category
- The highlighted models (AfroXLMR 76L) show the top overall performance
- Multi-lingual training generally outperforms in-language training
- Standard deviations are reported alongside average scores
- AVG doest not include english results.

### Citation
```
@misc{yu2025injongo,
      title={INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages}, 
      author={Hao Yu and Jesujoba O. Alabi and Andiswa Bukula and Jian Yun Zhuang and En-Shiun Annie Lee and Tadesse Kebede Guge and Israel Abebe Azime and Happy Buzaaba and Blessing Kudzaishe Sibanda and Godson K. Kalipe and Jonathan Mukiibi and Salomon Kabongo Kabenamualu and Mmasibidi Setaka and Lolwethu Ndolela and Nkiruka Odu and Rooweither Mabuya and Shamsuddeen Hassan Muhammad and Salomey Osei and Sokhar Samb and Juliet W. Murage and Dietrich Klakow and David Ifeoluwa Adelani},
      year={2025},
      eprint={2502.09814},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.09814}, 
}
```

```
@misc{adelani2023sib200,
      title={SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects}, 
      author={David Ifeoluwa Adelani and Hannah Liu and Xiaoyu Shen and Nikita Vassilyev and Jesujoba O. Alabi and Yanke Mao and Haonan Gao and Annie En-Shiun Lee},
      year={2023},
      eprint={2309.07445},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```