Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,229 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: translation
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
- en
|
6 |
+
- am
|
7 |
+
- ar
|
8 |
+
- so
|
9 |
+
- sw
|
10 |
+
- pt
|
11 |
+
- af
|
12 |
+
- fr
|
13 |
+
- zu
|
14 |
+
- mg
|
15 |
+
- ha
|
16 |
+
- sn
|
17 |
+
- arz
|
18 |
+
- ny
|
19 |
+
- ig
|
20 |
+
- xh
|
21 |
+
- yo
|
22 |
+
- st
|
23 |
+
- rw
|
24 |
+
- tn
|
25 |
+
- ti
|
26 |
+
- ts
|
27 |
+
- om
|
28 |
+
- run
|
29 |
+
- nso
|
30 |
+
- ee
|
31 |
+
- ln
|
32 |
+
- tw
|
33 |
+
- pcm
|
34 |
+
- gaa
|
35 |
+
- loz
|
36 |
+
- lg
|
37 |
+
- guw
|
38 |
+
- bem
|
39 |
+
- efi
|
40 |
+
- lue
|
41 |
+
- lua
|
42 |
+
- toi
|
43 |
+
- ve
|
44 |
+
- tum
|
45 |
+
- tll
|
46 |
+
- iso
|
47 |
+
- kqn
|
48 |
+
- zne
|
49 |
+
- umb
|
50 |
+
- mos
|
51 |
+
- tiv
|
52 |
+
- lu
|
53 |
+
- ff
|
54 |
+
- kwy
|
55 |
+
- bci
|
56 |
+
- rnd
|
57 |
+
- luo
|
58 |
+
- wal
|
59 |
+
- ss
|
60 |
+
- lun
|
61 |
+
- wo
|
62 |
+
- nyk
|
63 |
+
- kj
|
64 |
+
- ki
|
65 |
+
- fon
|
66 |
+
- bm
|
67 |
+
- cjk
|
68 |
+
- din
|
69 |
+
- dyu
|
70 |
+
- kab
|
71 |
+
- kam
|
72 |
+
- kbp
|
73 |
+
- kr
|
74 |
+
- kmb
|
75 |
+
- kg
|
76 |
+
- nus
|
77 |
+
- sg
|
78 |
+
- taq
|
79 |
+
- tzm
|
80 |
+
- nqo
|
81 |
+
|
82 |
license: apache-2.0
|
83 |
+
---
|
84 |
+
SSA-COMET-STL, a robust, automatic metric for MTE, built based on SSA-MTE: It receives a triplet with (source sentence, translation, reference translation), and returns a score that reflects the quality of the translation.
|
85 |
+
This model is based on an improved African enhanced encoder, [afro-xlmr-large-76L](https://huggingface.co/Davlan/afro-xlmr-large-76L).
|
86 |
+
|
87 |
+
# Paper
|
88 |
+
|
89 |
+
Coming soon
|
90 |
+
|
91 |
+
# License
|
92 |
+
|
93 |
+
Apache-2.0
|
94 |
+
|
95 |
+
# Usage (SSA-COMET)
|
96 |
+
|
97 |
+
Using this model requires unbabel-comet to be installed:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
pip install --upgrade pip # ensures that pip is current
|
101 |
+
pip install unbabel-comet
|
102 |
+
```
|
103 |
+
|
104 |
+
Then you can use it through comet CLI:
|
105 |
+
|
106 |
+
```bash
|
107 |
+
comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model McGill-NLP/ssa-comet-stl
|
108 |
+
```
|
109 |
+
|
110 |
+
Or using Python:
|
111 |
+
|
112 |
+
```python
|
113 |
+
from comet import download_model, load_from_checkpoint
|
114 |
+
model_path = download_model("McGill-NLP/ssa-comet-stl")
|
115 |
+
model = load_from_checkpoint(model_path)
|
116 |
+
data = [
|
117 |
+
{
|
118 |
+
"src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
|
119 |
+
"mt": "Nadal's head to head record against the Canadian is 7–2.",
|
120 |
+
"ref": "Nadal scored seven unanswered points against Canada."
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
|
124 |
+
"mt": "He recently lost against Raonic in the Brisbane Open.",
|
125 |
+
"ref": "He recently lost to Raoniki in the game Sisi Brisbeni."
|
126 |
+
}
|
127 |
+
]
|
128 |
+
model_output = model.predict(data, batch_size=8, gpus=1)
|
129 |
+
print (model_output)
|
130 |
+
```
|
131 |
+
|
132 |
+
# Intended uses
|
133 |
+
|
134 |
+
Our model is intended to be used for **MT evaluation**.
|
135 |
+
|
136 |
+
Given a triplet with (source sentence, translation, reference translation), it outputs a single score between 0 and 1, where 1 represents a perfect translation.
|
137 |
+
|
138 |
+
# Languages Covered:
|
139 |
+
|
140 |
+
There are 76 languages available :
|
141 |
+
- English (eng)
|
142 |
+
- Amharic (amh)
|
143 |
+
- Arabic (ara)
|
144 |
+
- Somali (som)
|
145 |
+
- Kiswahili (swa)
|
146 |
+
- Portuguese (por)
|
147 |
+
- Afrikaans (afr)
|
148 |
+
- French (fra)
|
149 |
+
- isiZulu (zul)
|
150 |
+
- Malagasy (mlg)
|
151 |
+
- Hausa (hau)
|
152 |
+
- chiShona (sna)
|
153 |
+
- Egyptian Arabic (arz)
|
154 |
+
- Chichewa (nya)
|
155 |
+
- Igbo (ibo)
|
156 |
+
- isiXhosa (xho)
|
157 |
+
- Yorùbá (yor)
|
158 |
+
- Sesotho (sot)
|
159 |
+
- Kinyarwanda (kin)
|
160 |
+
- Tigrinya (tir)
|
161 |
+
- Tsonga (tso)
|
162 |
+
- Oromo (orm)
|
163 |
+
- Rundi (run)
|
164 |
+
- Northern Sotho (nso)
|
165 |
+
- Ewe (ewe)
|
166 |
+
- Lingala (lin)
|
167 |
+
- Twi (twi)
|
168 |
+
- Nigerian Pidgin (pcm)
|
169 |
+
- Ga (gaa)
|
170 |
+
- Lozi (loz)
|
171 |
+
- Luganda (lug)
|
172 |
+
- Gun (guw)
|
173 |
+
- Bemba (bem)
|
174 |
+
- Efik (efi)
|
175 |
+
- Luvale (lue)
|
176 |
+
- Luba-Lulua (lua)
|
177 |
+
- Tonga (toi)
|
178 |
+
- Tshivenḓa (ven)
|
179 |
+
- Tumbuka (tum)
|
180 |
+
- Tetela (tll)
|
181 |
+
- Isoko (iso)
|
182 |
+
- Kaonde (kqn)
|
183 |
+
- Zande (zne)
|
184 |
+
- Umbundu (umb)
|
185 |
+
- Mossi (mos)
|
186 |
+
- Tiv (tiv)
|
187 |
+
- Luba-Katanga (lub)
|
188 |
+
- Fula (fuv)
|
189 |
+
- San Salvador Kongo (kwy)
|
190 |
+
- Baoulé (bci)
|
191 |
+
- Ruund (rnd)
|
192 |
+
- Luo (luo)
|
193 |
+
- Wolaitta (wal)
|
194 |
+
- Swazi (ssw)
|
195 |
+
- Lunda (lun)
|
196 |
+
- Wolof (wol)
|
197 |
+
- Nyaneka (nyk)
|
198 |
+
- Kwanyama (kua)
|
199 |
+
- Kikuyu (kik)
|
200 |
+
- Fon (fon)
|
201 |
+
- Bambara (bam)
|
202 |
+
- Chokwe (cjk)
|
203 |
+
- Dinka (dik)
|
204 |
+
- Dyula (dyu)
|
205 |
+
- Kabyle (kab)
|
206 |
+
- Kamba (kam)
|
207 |
+
- Kabiyè (kbp)
|
208 |
+
- Kanuri (knc)
|
209 |
+
- Kimbundu (kmb)
|
210 |
+
- Kikongo (kon)
|
211 |
+
- Nuer (nus)
|
212 |
+
- Sango (sag)
|
213 |
+
- Tamasheq (taq)
|
214 |
+
- Tamazight (tzm)
|
215 |
+
- N'ko (nqo)
|
216 |
+
|
217 |
+
# Specifically Finetuned on:
|
218 |
+
- Amharic (amh)
|
219 |
+
- Hausa (hau)
|
220 |
+
- Igbo (ibo)
|
221 |
+
- Kikuyu (kik)
|
222 |
+
- Kinyarwanda (kin)
|
223 |
+
- Luo (luo)
|
224 |
+
- Twi (twi)
|
225 |
+
- Yoruba (yor)
|
226 |
+
- Zulu (zul)
|
227 |
+
- Ewe (Ewe)
|
228 |
+
- Lingala (lin)
|
229 |
+
- Wolof (wol)
|