Mdean77 commited on
Commit
f62ab3b
·
verified ·
1 Parent(s): 394733c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,855 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:1567
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: nomic-ai/modernbert-embed-base
14
+ widget:
15
+ - source_sentence: How many authors are listed for the trial?
16
+ sentences:
17
+ - 'chemotherapy and bone marrow transplantation for certain malignancies and has
18
+ a long track
19
+
20
+ record of safe use in adults and children. The incidence of adverse events such
21
+ as fever, chills,
22
+
23
+ bone pain, dyspnea, tachycardia, and hemodynamic instability was no different
24
+ between GM-
25
+
26
+ CSF and placebo-treated groups in controlled adult BMT studies. Rapid IV administration
27
+ of'
28
+ - 'clinical ICU staff in accordance with institutional practice and judgment.
29
+
30
+ Child Assent Subjects who are eligible for this study will be critically ill,
31
+ and child assent is
32
+
33
+ typically not possible at the time of study enrollment. However, during follow
34
+ up after discharge
35
+
36
+ from the ICU, issues about assent become applicable. Children who are capable
37
+ of giving assent'
38
+ - 'Controlled Phase 2 Trial. Stroke, 49(5):1210–1216, 2018.
39
+
40
+ [76] M. K. R. Somagutta, M. K. Lourdes Pormento, P. Hamid, A. Hamdan, M. A. Khan,
41
+
42
+ R. Desir, R. Vijayan, S. Shirke, R. Jeyakumar, Z. Dogar, S. S. Makkar, P. Guntipalli,
43
+
44
+ N. N. Ngardig, M. S. Nagineni, T. Paul, E. Luvsannyam, C. Riddick, and M. A. Sanchez-'
45
+ - source_sentence: What type of event can lead to the suspension of enrollment in
46
+ the study?
47
+ sentences:
48
+ - 'and data generated by this study must be available for inspection upon request
49
+ by representatives
50
+
51
+ (when applicable) of the Food and Drug Administration (FDA), NIH, other Federal
52
+ funders or
53
+
54
+ study sponsors, and the Institutional Review Board (IRB) for each study site.
55
+
56
+ 9 Protection of Human Subjects
57
+
58
+ 9.1 Risks to Human Subjects
59
+
60
+ 9.1.1 Human Subjects Involvement and Characteristics'
61
+ - 'two consecutive days while receiving study drug, the drug will be discontinued.
62
+
63
+ Adverse events will be monitored as described in Section 10.2.6 on page 61. The
64
+ medical
65
+
66
+ monitor has the authority to suspend enrollment in the event of an unexpected,
67
+ study-related
68
+
69
+ serious adverse event that is judged to change the risk/benefit of subject participation.'
70
+ - 'innate immune system is common and measurable in pediatric sepsis. Innate immune
71
+ cells such
72
+
73
+ as monocytes and neutrophils serve critical functions including migration to sites
74
+ of infection,
75
+
76
+ phagocytosis of pathogens, promotion of microbial killing, antigen presentation,
77
+ and production
78
+
79
+ of immunomodulatory cytokines. We have repeatedly shown that severe reduction
80
+ in the ability'
81
+ - source_sentence: When will the reviews start?
82
+ sentences:
83
+ - 'mg/kg/day given for three days by continuous infusion was used.23, 63 Despite
84
+ its apparent safety
85
+
86
+ in adults, this dose is substantially higher than what has been used in children
87
+ with HLH/MAS
88
+
89
+ or adults with COVID-19.
90
+
91
+ In the largest (to date) published study of anakinra in hospitalized, hyper-inflamed
92
+ adults
93
+
94
+ with COVID-19 (N=392), a dose of 10 mg/kg/day IV divided every 12 hours (infused
95
+ over 1'
96
+ - 'data are required for Federal reporting purposes to delineate subject accrual
97
+ by race, ethnicity,
98
+
99
+ and gender.
100
+
101
+ For purposes of the DCC handling potential protected health information (PHI)
102
+ and pro-
103
+
104
+ ducing the de–identified research data sets that will be used for analyses, all
105
+ study sites have
106
+
107
+ been offered a Business Associate Agreement with the University of Utah. Copies
108
+ of executed'
109
+ - 'empirically whether these patients differ from those remaining in the study for
110
+ the scheduled
111
+
112
+ treatment and follow-up time. Missingness for primary, secondary, exploratory,
113
+ and safety
114
+
115
+ outcomes will be reviewed in aggregate and by site. Reviews will start as soon
116
+ as enrollment
117
+
118
+ opens and will be regulatory monitored so missing data problems can be addressed
119
+ early in the
120
+
121
+ study.'
122
+ - source_sentence: What type of results will be communicated to the Data Coordinating
123
+ Center and clinical site investigator?
124
+ sentences:
125
+ - 'ing of a medical condition that was present at the time of randomization will
126
+ be considered a
127
+
128
+ new adverse event and reported.
129
+
130
+ After patient randomization all adverse events (including serious adverse events)
131
+ will be
132
+
133
+ recorded according to relatedness, severity, and expectedness, as well as their
134
+ duration and'
135
+ - '12.2 Health Insurance Portability and Accountability Act
136
+
137
+ Data elements collected include the date of birth and date of admission. Prior
138
+ to statistical
139
+
140
+ analyses, dates will be used to calculate patient age at the time of the study
141
+ events.
142
+
143
+ Data elements for race, ethnicity, and gender are also being collected. These
144
+ demographic'
145
+ - 'The Collaborative Pediatric Critical Care Research NetworkPage 34 of 76 Protocol
146
+ 90 (Hall, Zuppa and Mourani)
147
+
148
+ 4.5 Randomization
149
+
150
+ Upon determination of a subject’s immunophenotype, Dr. Hall or his designee will
151
+ notify the
152
+
153
+ Data Coordinating Center and the clinical site investigator of the laboratory
154
+ results. Subjects'
155
+ - source_sentence: What age groups will be enrolled in the study?
156
+ sentences:
157
+ - 'have mild to moderate inflammation (i.e. a serum ferritin level <2,000 ng/ml)
158
+ from the TRIPS
159
+
160
+ trial. Those subjects will be instead entered into a completely distinct clinical
161
+ trial of immune
162
+
163
+ stimulation with GM-CSF (GRACE-2) that is covered by a separate IND (#112277).
164
+
165
+ PRECISE Protocol Version 1.07
166
+
167
+ Protocol Version Date: June 16, 2023'
168
+ - 'Subject Population to be Studied Participating sites will enroll infants, children
169
+ and adoles-
170
+
171
+ cent patients who are admitted to a Pediatric or Cardiac Intensive Care Unit with
172
+ sepsis-induced
173
+
174
+ multiple organ dysfunction syndrome (MODS). The goal is to determine if personalized
175
+ im-
176
+
177
+ munomodulation is an effective strategy to reduce mortality and morbidity from
178
+ sepsis-induced'
179
+ - 'Loosdregt, N. M. Wulffraat, S. de Roock, and S. J. Vastert. Treatment to target
180
+ using
181
+
182
+ recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset
183
+
184
+ systemic juvenile idiopathic arthritis: Results from a five-year follow-up study.
185
+ Arthritis
186
+
187
+ Rheumatol, 71(7):1163–1173, 2019.
188
+
189
+ [78] R. K. Thakkar, R. Devine, J. Popelka, J. Hensley, R. Fabia, J. A. Muszynski,
190
+ and M. W.'
191
+ pipeline_tag: sentence-similarity
192
+ library_name: sentence-transformers
193
+ metrics:
194
+ - cosine_accuracy@1
195
+ - cosine_accuracy@3
196
+ - cosine_accuracy@5
197
+ - cosine_accuracy@10
198
+ - cosine_precision@1
199
+ - cosine_precision@3
200
+ - cosine_precision@5
201
+ - cosine_precision@10
202
+ - cosine_recall@1
203
+ - cosine_recall@3
204
+ - cosine_recall@5
205
+ - cosine_recall@10
206
+ - cosine_ndcg@10
207
+ - cosine_mrr@10
208
+ - cosine_map@100
209
+ model-index:
210
+ - name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
211
+ results:
212
+ - task:
213
+ type: information-retrieval
214
+ name: Information Retrieval
215
+ dataset:
216
+ name: dim 768
217
+ type: dim_768
218
+ metrics:
219
+ - type: cosine_accuracy@1
220
+ value: 0.5714285714285714
221
+ name: Cosine Accuracy@1
222
+ - type: cosine_accuracy@3
223
+ value: 0.7828571428571428
224
+ name: Cosine Accuracy@3
225
+ - type: cosine_accuracy@5
226
+ value: 0.8114285714285714
227
+ name: Cosine Accuracy@5
228
+ - type: cosine_accuracy@10
229
+ value: 0.8742857142857143
230
+ name: Cosine Accuracy@10
231
+ - type: cosine_precision@1
232
+ value: 0.5714285714285714
233
+ name: Cosine Precision@1
234
+ - type: cosine_precision@3
235
+ value: 0.2609523809523809
236
+ name: Cosine Precision@3
237
+ - type: cosine_precision@5
238
+ value: 0.16228571428571423
239
+ name: Cosine Precision@5
240
+ - type: cosine_precision@10
241
+ value: 0.08742857142857141
242
+ name: Cosine Precision@10
243
+ - type: cosine_recall@1
244
+ value: 0.5714285714285714
245
+ name: Cosine Recall@1
246
+ - type: cosine_recall@3
247
+ value: 0.7828571428571428
248
+ name: Cosine Recall@3
249
+ - type: cosine_recall@5
250
+ value: 0.8114285714285714
251
+ name: Cosine Recall@5
252
+ - type: cosine_recall@10
253
+ value: 0.8742857142857143
254
+ name: Cosine Recall@10
255
+ - type: cosine_ndcg@10
256
+ value: 0.7304617900805063
257
+ name: Cosine Ndcg@10
258
+ - type: cosine_mrr@10
259
+ value: 0.6836485260770975
260
+ name: Cosine Mrr@10
261
+ - type: cosine_map@100
262
+ value: 0.6898282619821292
263
+ name: Cosine Map@100
264
+ - task:
265
+ type: information-retrieval
266
+ name: Information Retrieval
267
+ dataset:
268
+ name: dim 512
269
+ type: dim_512
270
+ metrics:
271
+ - type: cosine_accuracy@1
272
+ value: 0.5485714285714286
273
+ name: Cosine Accuracy@1
274
+ - type: cosine_accuracy@3
275
+ value: 0.7885714285714286
276
+ name: Cosine Accuracy@3
277
+ - type: cosine_accuracy@5
278
+ value: 0.8285714285714286
279
+ name: Cosine Accuracy@5
280
+ - type: cosine_accuracy@10
281
+ value: 0.8685714285714285
282
+ name: Cosine Accuracy@10
283
+ - type: cosine_precision@1
284
+ value: 0.5485714285714286
285
+ name: Cosine Precision@1
286
+ - type: cosine_precision@3
287
+ value: 0.2628571428571428
288
+ name: Cosine Precision@3
289
+ - type: cosine_precision@5
290
+ value: 0.16571428571428568
291
+ name: Cosine Precision@5
292
+ - type: cosine_precision@10
293
+ value: 0.08685714285714283
294
+ name: Cosine Precision@10
295
+ - type: cosine_recall@1
296
+ value: 0.5485714285714286
297
+ name: Cosine Recall@1
298
+ - type: cosine_recall@3
299
+ value: 0.7885714285714286
300
+ name: Cosine Recall@3
301
+ - type: cosine_recall@5
302
+ value: 0.8285714285714286
303
+ name: Cosine Recall@5
304
+ - type: cosine_recall@10
305
+ value: 0.8685714285714285
306
+ name: Cosine Recall@10
307
+ - type: cosine_ndcg@10
308
+ value: 0.7172419802927883
309
+ name: Cosine Ndcg@10
310
+ - type: cosine_mrr@10
311
+ value: 0.6675759637188208
312
+ name: Cosine Mrr@10
313
+ - type: cosine_map@100
314
+ value: 0.6741729815259775
315
+ name: Cosine Map@100
316
+ - task:
317
+ type: information-retrieval
318
+ name: Information Retrieval
319
+ dataset:
320
+ name: dim 256
321
+ type: dim_256
322
+ metrics:
323
+ - type: cosine_accuracy@1
324
+ value: 0.5485714285714286
325
+ name: Cosine Accuracy@1
326
+ - type: cosine_accuracy@3
327
+ value: 0.76
328
+ name: Cosine Accuracy@3
329
+ - type: cosine_accuracy@5
330
+ value: 0.84
331
+ name: Cosine Accuracy@5
332
+ - type: cosine_accuracy@10
333
+ value: 0.9085714285714286
334
+ name: Cosine Accuracy@10
335
+ - type: cosine_precision@1
336
+ value: 0.5485714285714286
337
+ name: Cosine Precision@1
338
+ - type: cosine_precision@3
339
+ value: 0.2533333333333333
340
+ name: Cosine Precision@3
341
+ - type: cosine_precision@5
342
+ value: 0.16799999999999995
343
+ name: Cosine Precision@5
344
+ - type: cosine_precision@10
345
+ value: 0.09085714285714283
346
+ name: Cosine Precision@10
347
+ - type: cosine_recall@1
348
+ value: 0.5485714285714286
349
+ name: Cosine Recall@1
350
+ - type: cosine_recall@3
351
+ value: 0.76
352
+ name: Cosine Recall@3
353
+ - type: cosine_recall@5
354
+ value: 0.84
355
+ name: Cosine Recall@5
356
+ - type: cosine_recall@10
357
+ value: 0.9085714285714286
358
+ name: Cosine Recall@10
359
+ - type: cosine_ndcg@10
360
+ value: 0.7268936400245406
361
+ name: Cosine Ndcg@10
362
+ - type: cosine_mrr@10
363
+ value: 0.6687596371882085
364
+ name: Cosine Mrr@10
365
+ - type: cosine_map@100
366
+ value: 0.6719911574054431
367
+ name: Cosine Map@100
368
+ - task:
369
+ type: information-retrieval
370
+ name: Information Retrieval
371
+ dataset:
372
+ name: dim 128
373
+ type: dim_128
374
+ metrics:
375
+ - type: cosine_accuracy@1
376
+ value: 0.49142857142857144
377
+ name: Cosine Accuracy@1
378
+ - type: cosine_accuracy@3
379
+ value: 0.7028571428571428
380
+ name: Cosine Accuracy@3
381
+ - type: cosine_accuracy@5
382
+ value: 0.7885714285714286
383
+ name: Cosine Accuracy@5
384
+ - type: cosine_accuracy@10
385
+ value: 0.8685714285714285
386
+ name: Cosine Accuracy@10
387
+ - type: cosine_precision@1
388
+ value: 0.49142857142857144
389
+ name: Cosine Precision@1
390
+ - type: cosine_precision@3
391
+ value: 0.23428571428571424
392
+ name: Cosine Precision@3
393
+ - type: cosine_precision@5
394
+ value: 0.15771428571428567
395
+ name: Cosine Precision@5
396
+ - type: cosine_precision@10
397
+ value: 0.08685714285714284
398
+ name: Cosine Precision@10
399
+ - type: cosine_recall@1
400
+ value: 0.49142857142857144
401
+ name: Cosine Recall@1
402
+ - type: cosine_recall@3
403
+ value: 0.7028571428571428
404
+ name: Cosine Recall@3
405
+ - type: cosine_recall@5
406
+ value: 0.7885714285714286
407
+ name: Cosine Recall@5
408
+ - type: cosine_recall@10
409
+ value: 0.8685714285714285
410
+ name: Cosine Recall@10
411
+ - type: cosine_ndcg@10
412
+ value: 0.6778419592624233
413
+ name: Cosine Ndcg@10
414
+ - type: cosine_mrr@10
415
+ value: 0.6168730158730158
416
+ name: Cosine Mrr@10
417
+ - type: cosine_map@100
418
+ value: 0.6219971103464577
419
+ name: Cosine Map@100
420
+ - task:
421
+ type: information-retrieval
422
+ name: Information Retrieval
423
+ dataset:
424
+ name: dim 64
425
+ type: dim_64
426
+ metrics:
427
+ - type: cosine_accuracy@1
428
+ value: 0.38285714285714284
429
+ name: Cosine Accuracy@1
430
+ - type: cosine_accuracy@3
431
+ value: 0.5714285714285714
432
+ name: Cosine Accuracy@3
433
+ - type: cosine_accuracy@5
434
+ value: 0.6571428571428571
435
+ name: Cosine Accuracy@5
436
+ - type: cosine_accuracy@10
437
+ value: 0.7885714285714286
438
+ name: Cosine Accuracy@10
439
+ - type: cosine_precision@1
440
+ value: 0.38285714285714284
441
+ name: Cosine Precision@1
442
+ - type: cosine_precision@3
443
+ value: 0.19047619047619044
444
+ name: Cosine Precision@3
445
+ - type: cosine_precision@5
446
+ value: 0.1314285714285714
447
+ name: Cosine Precision@5
448
+ - type: cosine_precision@10
449
+ value: 0.07885714285714283
450
+ name: Cosine Precision@10
451
+ - type: cosine_recall@1
452
+ value: 0.38285714285714284
453
+ name: Cosine Recall@1
454
+ - type: cosine_recall@3
455
+ value: 0.5714285714285714
456
+ name: Cosine Recall@3
457
+ - type: cosine_recall@5
458
+ value: 0.6571428571428571
459
+ name: Cosine Recall@5
460
+ - type: cosine_recall@10
461
+ value: 0.7885714285714286
462
+ name: Cosine Recall@10
463
+ - type: cosine_ndcg@10
464
+ value: 0.5697625172066919
465
+ name: Cosine Ndcg@10
466
+ - type: cosine_mrr@10
467
+ value: 0.5015079365079367
468
+ name: Cosine Mrr@10
469
+ - type: cosine_map@100
470
+ value: 0.5090522718083348
471
+ name: Cosine Map@100
472
+ ---
473
+
474
+ # Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
475
+
476
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
477
+
478
+ ## Model Details
479
+
480
+ ### Model Description
481
+ - **Model Type:** Sentence Transformer
482
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
483
+ - **Maximum Sequence Length:** 1024 tokens
484
+ - **Output Dimensionality:** 768 dimensions
485
+ - **Similarity Function:** Cosine Similarity
486
+ <!-- - **Training Dataset:** Unknown -->
487
+ - **Language:** en
488
+ - **License:** apache-2.0
489
+
490
+ ### Model Sources
491
+
492
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
493
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
494
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
495
+
496
+ ### Full Model Architecture
497
+
498
+ ```
499
+ SentenceTransformer(
500
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
501
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
502
+ (2): Normalize()
503
+ )
504
+ ```
505
+
506
+ ## Usage
507
+
508
+ ### Direct Usage (Sentence Transformers)
509
+
510
+ First install the Sentence Transformers library:
511
+
512
+ ```bash
513
+ pip install -U sentence-transformers
514
+ ```
515
+
516
+ Then you can load this model and run inference.
517
+ ```python
518
+ from sentence_transformers import SentenceTransformer
519
+
520
+ # Download from the 🤗 Hub
521
+ model = SentenceTransformer("Mdean77/modernbert-embed-quickb")
522
+ # Run inference
523
+ sentences = [
524
+ 'What age groups will be enrolled in the study?',
525
+ 'Subject Population to be Studied Participating sites will enroll infants, children and adoles-\ncent patients who are admitted to a Pediatric or Cardiac Intensive Care Unit with sepsis-induced\nmultiple organ dysfunction syndrome (MODS). The goal is to determine if personalized im-\nmunomodulation is an effective strategy to reduce mortality and morbidity from sepsis-induced',
526
+ 'have mild to moderate inflammation (i.e. a serum ferritin level <2,000 ng/ml) from the TRIPS\ntrial. Those subjects will be instead entered into a completely distinct clinical trial of immune\nstimulation with GM-CSF (GRACE-2) that is covered by a separate IND (#112277).\nPRECISE Protocol Version 1.07\nProtocol Version Date: June 16, 2023',
527
+ ]
528
+ embeddings = model.encode(sentences)
529
+ print(embeddings.shape)
530
+ # [3, 768]
531
+
532
+ # Get the similarity scores for the embeddings
533
+ similarities = model.similarity(embeddings, embeddings)
534
+ print(similarities.shape)
535
+ # [3, 3]
536
+ ```
537
+
538
+ <!--
539
+ ### Direct Usage (Transformers)
540
+
541
+ <details><summary>Click to see the direct usage in Transformers</summary>
542
+
543
+ </details>
544
+ -->
545
+
546
+ <!--
547
+ ### Downstream Usage (Sentence Transformers)
548
+
549
+ You can finetune this model on your own dataset.
550
+
551
+ <details><summary>Click to expand</summary>
552
+
553
+ </details>
554
+ -->
555
+
556
+ <!--
557
+ ### Out-of-Scope Use
558
+
559
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
560
+ -->
561
+
562
+ ## Evaluation
563
+
564
+ ### Metrics
565
+
566
+ #### Information Retrieval
567
+
568
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
569
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
570
+
571
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
572
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
573
+ | cosine_accuracy@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 |
574
+ | cosine_accuracy@3 | 0.7829 | 0.7886 | 0.76 | 0.7029 | 0.5714 |
575
+ | cosine_accuracy@5 | 0.8114 | 0.8286 | 0.84 | 0.7886 | 0.6571 |
576
+ | cosine_accuracy@10 | 0.8743 | 0.8686 | 0.9086 | 0.8686 | 0.7886 |
577
+ | cosine_precision@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 |
578
+ | cosine_precision@3 | 0.261 | 0.2629 | 0.2533 | 0.2343 | 0.1905 |
579
+ | cosine_precision@5 | 0.1623 | 0.1657 | 0.168 | 0.1577 | 0.1314 |
580
+ | cosine_precision@10 | 0.0874 | 0.0869 | 0.0909 | 0.0869 | 0.0789 |
581
+ | cosine_recall@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 |
582
+ | cosine_recall@3 | 0.7829 | 0.7886 | 0.76 | 0.7029 | 0.5714 |
583
+ | cosine_recall@5 | 0.8114 | 0.8286 | 0.84 | 0.7886 | 0.6571 |
584
+ | cosine_recall@10 | 0.8743 | 0.8686 | 0.9086 | 0.8686 | 0.7886 |
585
+ | **cosine_ndcg@10** | **0.7305** | **0.7172** | **0.7269** | **0.6778** | **0.5698** |
586
+ | cosine_mrr@10 | 0.6836 | 0.6676 | 0.6688 | 0.6169 | 0.5015 |
587
+ | cosine_map@100 | 0.6898 | 0.6742 | 0.672 | 0.622 | 0.5091 |
588
+
589
+ <!--
590
+ ## Bias, Risks and Limitations
591
+
592
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
593
+ -->
594
+
595
+ <!--
596
+ ### Recommendations
597
+
598
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
599
+ -->
600
+
601
+ ## Training Details
602
+
603
+ ### Training Dataset
604
+
605
+ #### Unnamed Dataset
606
+
607
+ * Size: 1,567 training samples
608
+ * Columns: <code>anchor</code> and <code>positive</code>
609
+ * Approximate statistics based on the first 1000 samples:
610
+ | | anchor | positive |
611
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
612
+ | type | string | string |
613
+ | details | <ul><li>min: 8 tokens</li><li>mean: 15.03 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 57 tokens</li><li>mean: 90.85 tokens</li><li>max: 185 tokens</li></ul> |
614
+ * Samples:
615
+ | anchor | positive |
616
+ |:-----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
617
+ | <code>How many terabytes of data are referenced?</code> | <code>over 125 terabytes of data.<br>Information systems are available 24/7/365 unless a scheduled maintenance period or<br>mitigation of an unexpected event is required. Critical systems availability has exceeded 99.9%<br>for the past 5 years.<br>7.2.3 Security, Support, Encryption, and Confidentiality<br>The data center coordinates the network infrastructure and security with University Information</code> |
618
+ | <code>What regulation allows single parent permission for the study?</code> | <code>for their child in the study. Single parent permission is permitted under 45 CFR §46.405. The<br>parent or legal guardian will be informed about the objectives of the study and the potential<br>risks and benefits of their child’s participation. If the parent or legal guardian refuses permission<br>for their child to participate, then all clinical management will continue to be provided by the</code> |
619
+ | <code>What is included in the follow-up plan for non-compliant sites?</code> | <code>planned site visits, criteria for focused visits, additional visits or remote monitoring, a plan for<br>chart review and a follow up plan for non-compliant sites. The monitoring plan also describes<br>the type of monitoring that will take place (e.g., sample of all subjects within a site; key data or<br>all data), the schedule of visits, how they are reported and a time frame to resolve any issues<br>found.</code> |
620
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
621
+ ```json
622
+ {
623
+ "loss": "MultipleNegativesRankingLoss",
624
+ "matryoshka_dims": [
625
+ 768,
626
+ 512,
627
+ 256,
628
+ 128,
629
+ 64
630
+ ],
631
+ "matryoshka_weights": [
632
+ 1,
633
+ 1,
634
+ 1,
635
+ 1,
636
+ 1
637
+ ],
638
+ "n_dims_per_step": -1
639
+ }
640
+ ```
641
+
642
+ ### Training Hyperparameters
643
+ #### Non-Default Hyperparameters
644
+
645
+ - `eval_strategy`: epoch
646
+ - `per_device_train_batch_size`: 16
647
+ - `gradient_accumulation_steps`: 16
648
+ - `learning_rate`: 2e-05
649
+ - `num_train_epochs`: 4
650
+ - `lr_scheduler_type`: cosine
651
+ - `warmup_ratio`: 0.1
652
+ - `tf32`: False
653
+ - `load_best_model_at_end`: True
654
+ - `batch_sampler`: no_duplicates
655
+
656
+ #### All Hyperparameters
657
+ <details><summary>Click to expand</summary>
658
+
659
+ - `overwrite_output_dir`: False
660
+ - `do_predict`: False
661
+ - `eval_strategy`: epoch
662
+ - `prediction_loss_only`: True
663
+ - `per_device_train_batch_size`: 16
664
+ - `per_device_eval_batch_size`: 8
665
+ - `per_gpu_train_batch_size`: None
666
+ - `per_gpu_eval_batch_size`: None
667
+ - `gradient_accumulation_steps`: 16
668
+ - `eval_accumulation_steps`: None
669
+ - `torch_empty_cache_steps`: None
670
+ - `learning_rate`: 2e-05
671
+ - `weight_decay`: 0.0
672
+ - `adam_beta1`: 0.9
673
+ - `adam_beta2`: 0.999
674
+ - `adam_epsilon`: 1e-08
675
+ - `max_grad_norm`: 1.0
676
+ - `num_train_epochs`: 4
677
+ - `max_steps`: -1
678
+ - `lr_scheduler_type`: cosine
679
+ - `lr_scheduler_kwargs`: {}
680
+ - `warmup_ratio`: 0.1
681
+ - `warmup_steps`: 0
682
+ - `log_level`: passive
683
+ - `log_level_replica`: warning
684
+ - `log_on_each_node`: True
685
+ - `logging_nan_inf_filter`: True
686
+ - `save_safetensors`: True
687
+ - `save_on_each_node`: False
688
+ - `save_only_model`: False
689
+ - `restore_callback_states_from_checkpoint`: False
690
+ - `no_cuda`: False
691
+ - `use_cpu`: False
692
+ - `use_mps_device`: False
693
+ - `seed`: 42
694
+ - `data_seed`: None
695
+ - `jit_mode_eval`: False
696
+ - `use_ipex`: False
697
+ - `bf16`: False
698
+ - `fp16`: False
699
+ - `fp16_opt_level`: O1
700
+ - `half_precision_backend`: auto
701
+ - `bf16_full_eval`: False
702
+ - `fp16_full_eval`: False
703
+ - `tf32`: False
704
+ - `local_rank`: 0
705
+ - `ddp_backend`: None
706
+ - `tpu_num_cores`: None
707
+ - `tpu_metrics_debug`: False
708
+ - `debug`: []
709
+ - `dataloader_drop_last`: False
710
+ - `dataloader_num_workers`: 0
711
+ - `dataloader_prefetch_factor`: None
712
+ - `past_index`: -1
713
+ - `disable_tqdm`: False
714
+ - `remove_unused_columns`: True
715
+ - `label_names`: None
716
+ - `load_best_model_at_end`: True
717
+ - `ignore_data_skip`: False
718
+ - `fsdp`: []
719
+ - `fsdp_min_num_params`: 0
720
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
721
+ - `fsdp_transformer_layer_cls_to_wrap`: None
722
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
723
+ - `deepspeed`: None
724
+ - `label_smoothing_factor`: 0.0
725
+ - `optim`: adamw_torch
726
+ - `optim_args`: None
727
+ - `adafactor`: False
728
+ - `group_by_length`: False
729
+ - `length_column_name`: length
730
+ - `ddp_find_unused_parameters`: None
731
+ - `ddp_bucket_cap_mb`: None
732
+ - `ddp_broadcast_buffers`: False
733
+ - `dataloader_pin_memory`: True
734
+ - `dataloader_persistent_workers`: False
735
+ - `skip_memory_metrics`: True
736
+ - `use_legacy_prediction_loop`: False
737
+ - `push_to_hub`: False
738
+ - `resume_from_checkpoint`: None
739
+ - `hub_model_id`: None
740
+ - `hub_strategy`: every_save
741
+ - `hub_private_repo`: None
742
+ - `hub_always_push`: False
743
+ - `gradient_checkpointing`: False
744
+ - `gradient_checkpointing_kwargs`: None
745
+ - `include_inputs_for_metrics`: False
746
+ - `include_for_metrics`: []
747
+ - `eval_do_concat_batches`: True
748
+ - `fp16_backend`: auto
749
+ - `push_to_hub_model_id`: None
750
+ - `push_to_hub_organization`: None
751
+ - `mp_parameters`:
752
+ - `auto_find_batch_size`: False
753
+ - `full_determinism`: False
754
+ - `torchdynamo`: None
755
+ - `ray_scope`: last
756
+ - `ddp_timeout`: 1800
757
+ - `torch_compile`: False
758
+ - `torch_compile_backend`: None
759
+ - `torch_compile_mode`: None
760
+ - `dispatch_batches`: None
761
+ - `split_batches`: None
762
+ - `include_tokens_per_second`: False
763
+ - `include_num_input_tokens_seen`: False
764
+ - `neftune_noise_alpha`: None
765
+ - `optim_target_modules`: None
766
+ - `batch_eval_metrics`: False
767
+ - `eval_on_start`: False
768
+ - `use_liger_kernel`: False
769
+ - `eval_use_gather_object`: False
770
+ - `average_tokens_across_devices`: False
771
+ - `prompts`: None
772
+ - `batch_sampler`: no_duplicates
773
+ - `multi_dataset_batch_sampler`: proportional
774
+
775
+ </details>
776
+
777
+ ### Training Logs
778
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
779
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
780
+ | 1.0 | 7 | - | 0.6698 | 0.6606 | 0.6458 | 0.6146 | 0.5049 |
781
+ | 1.4898 | 10 | 55.7211 | - | - | - | - | - |
782
+ | 2.0 | 14 | - | 0.7210 | 0.7080 | 0.7183 | 0.6653 | 0.5621 |
783
+ | 2.9796 | 20 | 26.9161 | - | - | - | - | - |
784
+ | 3.0 | 21 | - | 0.7309 | 0.7172 | 0.7262 | 0.6762 | 0.5694 |
785
+ | **3.4898** | **24** | **-** | **0.7305** | **0.7172** | **0.7269** | **0.6778** | **0.5698** |
786
+
787
+ * The bold row denotes the saved checkpoint.
788
+
789
+ ### Framework Versions
790
+ - Python: 3.12.3
791
+ - Sentence Transformers: 3.4.1
792
+ - Transformers: 4.49.0
793
+ - PyTorch: 2.6.0
794
+ - Accelerate: 1.4.0
795
+ - Datasets: 3.3.2
796
+ - Tokenizers: 0.21.0
797
+
798
+ ## Citation
799
+
800
+ ### BibTeX
801
+
802
+ #### Sentence Transformers
803
+ ```bibtex
804
+ @inproceedings{reimers-2019-sentence-bert,
805
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
806
+ author = "Reimers, Nils and Gurevych, Iryna",
807
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
808
+ month = "11",
809
+ year = "2019",
810
+ publisher = "Association for Computational Linguistics",
811
+ url = "https://arxiv.org/abs/1908.10084",
812
+ }
813
+ ```
814
+
815
+ #### MatryoshkaLoss
816
+ ```bibtex
817
+ @misc{kusupati2024matryoshka,
818
+ title={Matryoshka Representation Learning},
819
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
820
+ year={2024},
821
+ eprint={2205.13147},
822
+ archivePrefix={arXiv},
823
+ primaryClass={cs.LG}
824
+ }
825
+ ```
826
+
827
+ #### MultipleNegativesRankingLoss
828
+ ```bibtex
829
+ @misc{henderson2017efficient,
830
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
831
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
832
+ year={2017},
833
+ eprint={1705.00652},
834
+ archivePrefix={arXiv},
835
+ primaryClass={cs.CL}
836
+ }
837
+ ```
838
+
839
+ <!--
840
+ ## Glossary
841
+
842
+ *Clearly define terms in order to be accessible across audiences.*
843
+ -->
844
+
845
+ <!--
846
+ ## Model Card Authors
847
+
848
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
849
+ -->
850
+
851
+ <!--
852
+ ## Model Card Contact
853
+
854
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
855
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/modernbert-embed-base",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50281,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "reference_compile": false,
40
+ "repad_logits_with_grad": false,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.49.0",
46
+ "vocab_size": 50368
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6ce0148002922bf5e359f1bc8bdec35d15cc554b250144d023afb333a12b7b1
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizer",
944
+ "unk_token": "[UNK]"
945
+ }