Upload folder using huggingface_hub
Browse files- config.json +207 -0
- configuration_intern_vit.py +119 -0
- configuration_internvl_chat.py +97 -0
- generation_config.json +4 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +644 -0
- modeling_intern_vit.py +429 -0
- modeling_internvl_chat.py +380 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2062 -0
config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"_name_or_path": "/home/mtk01/cs/hf_models_8B/stage2/Breeze_VL_stage2_epoch1_hq",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"InternVLChatModel"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
| 9 |
+
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
|
| 11 |
+
},
|
| 12 |
+
"downsample_ratio": 0.5,
|
| 13 |
+
"dynamic_image_size": true,
|
| 14 |
+
"force_image_size": 448,
|
| 15 |
+
"hidden_size": 4096,
|
| 16 |
+
"llm_config": {
|
| 17 |
+
"_name_or_path": "/home/mtk01/cs/llama31_8b_run6/",
|
| 18 |
+
"add_cross_attention": false,
|
| 19 |
+
"architectures": [
|
| 20 |
+
"LlamaForCausalLM"
|
| 21 |
+
],
|
| 22 |
+
"attention_bias": false,
|
| 23 |
+
"attention_dropout": 0.0,
|
| 24 |
+
"bad_words_ids": null,
|
| 25 |
+
"begin_suppress_tokens": null,
|
| 26 |
+
"bos_token_id": 128000,
|
| 27 |
+
"chunk_size_feed_forward": 0,
|
| 28 |
+
"cross_attention_hidden_size": null,
|
| 29 |
+
"decoder_start_token_id": null,
|
| 30 |
+
"diversity_penalty": 0.0,
|
| 31 |
+
"do_sample": false,
|
| 32 |
+
"early_stopping": false,
|
| 33 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 34 |
+
"eos_token_id": 128009,
|
| 35 |
+
"exponential_decay_length_penalty": null,
|
| 36 |
+
"finetuning_task": null,
|
| 37 |
+
"forced_bos_token_id": null,
|
| 38 |
+
"forced_eos_token_id": null,
|
| 39 |
+
"head_dim": 128,
|
| 40 |
+
"hidden_act": "silu",
|
| 41 |
+
"hidden_size": 4096,
|
| 42 |
+
"id2label": {
|
| 43 |
+
"0": "LABEL_0",
|
| 44 |
+
"1": "LABEL_1"
|
| 45 |
+
},
|
| 46 |
+
"initializer_range": 0.02,
|
| 47 |
+
"intermediate_size": 14336,
|
| 48 |
+
"is_decoder": false,
|
| 49 |
+
"is_encoder_decoder": false,
|
| 50 |
+
"label2id": {
|
| 51 |
+
"LABEL_0": 0,
|
| 52 |
+
"LABEL_1": 1
|
| 53 |
+
},
|
| 54 |
+
"length_penalty": 1.0,
|
| 55 |
+
"max_length": 20,
|
| 56 |
+
"max_position_embeddings": 131072,
|
| 57 |
+
"min_length": 0,
|
| 58 |
+
"mlp_bias": false,
|
| 59 |
+
"model_type": "llama",
|
| 60 |
+
"no_repeat_ngram_size": 0,
|
| 61 |
+
"num_attention_heads": 32,
|
| 62 |
+
"num_beam_groups": 1,
|
| 63 |
+
"num_beams": 1,
|
| 64 |
+
"num_hidden_layers": 32,
|
| 65 |
+
"num_key_value_heads": 8,
|
| 66 |
+
"num_return_sequences": 1,
|
| 67 |
+
"output_attentions": false,
|
| 68 |
+
"output_hidden_states": false,
|
| 69 |
+
"output_scores": false,
|
| 70 |
+
"pad_token_id": null,
|
| 71 |
+
"prefix": null,
|
| 72 |
+
"pretraining_tp": 1,
|
| 73 |
+
"problem_type": null,
|
| 74 |
+
"pruned_heads": {},
|
| 75 |
+
"remove_invalid_values": false,
|
| 76 |
+
"repetition_penalty": 1.0,
|
| 77 |
+
"return_dict": true,
|
| 78 |
+
"return_dict_in_generate": false,
|
| 79 |
+
"rms_norm_eps": 1e-05,
|
| 80 |
+
"rope_scaling": {
|
| 81 |
+
"factor": 8.0,
|
| 82 |
+
"high_freq_factor": 4.0,
|
| 83 |
+
"low_freq_factor": 1.0,
|
| 84 |
+
"original_max_position_embeddings": 8192,
|
| 85 |
+
"rope_type": "llama3"
|
| 86 |
+
},
|
| 87 |
+
"rope_theta": 500000.0,
|
| 88 |
+
"sep_token_id": null,
|
| 89 |
+
"suppress_tokens": null,
|
| 90 |
+
"task_specific_params": null,
|
| 91 |
+
"temperature": 1.0,
|
| 92 |
+
"tf_legacy_loss": false,
|
| 93 |
+
"tie_encoder_decoder": false,
|
| 94 |
+
"tie_word_embeddings": false,
|
| 95 |
+
"tokenizer_class": null,
|
| 96 |
+
"top_k": 50,
|
| 97 |
+
"top_p": 1.0,
|
| 98 |
+
"torch_dtype": "bfloat16",
|
| 99 |
+
"torchscript": false,
|
| 100 |
+
"transformers_version": "4.44.2",
|
| 101 |
+
"typical_p": 1.0,
|
| 102 |
+
"use_bfloat16": false,
|
| 103 |
+
"use_cache": false,
|
| 104 |
+
"vocab_size": 128256
|
| 105 |
+
},
|
| 106 |
+
"max_dynamic_patch": 12,
|
| 107 |
+
"min_dynamic_patch": 1,
|
| 108 |
+
"model_type": "internvl_chat",
|
| 109 |
+
"pad2square": false,
|
| 110 |
+
"ps_version": "v2",
|
| 111 |
+
"select_layer": -1,
|
| 112 |
+
"template": "internlm2-chat",
|
| 113 |
+
"tie_word_embeddings": false,
|
| 114 |
+
"torch_dtype": "bfloat16",
|
| 115 |
+
"transformers_version": null,
|
| 116 |
+
"use_backbone_lora": 0,
|
| 117 |
+
"use_llm_lora": 0,
|
| 118 |
+
"use_thumbnail": true,
|
| 119 |
+
"vision_config": {
|
| 120 |
+
"_name_or_path": "",
|
| 121 |
+
"add_cross_attention": false,
|
| 122 |
+
"architectures": [
|
| 123 |
+
"InternVisionModel"
|
| 124 |
+
],
|
| 125 |
+
"attention_dropout": 0.0,
|
| 126 |
+
"auto_map": {
|
| 127 |
+
"AutoConfig": "configuration_intern_vit.InternVisionConfig",
|
| 128 |
+
"AutoModel": "modeling_intern_vit.InternVisionModel"
|
| 129 |
+
},
|
| 130 |
+
"bad_words_ids": null,
|
| 131 |
+
"begin_suppress_tokens": null,
|
| 132 |
+
"bos_token_id": null,
|
| 133 |
+
"chunk_size_feed_forward": 0,
|
| 134 |
+
"cross_attention_hidden_size": null,
|
| 135 |
+
"decoder_start_token_id": null,
|
| 136 |
+
"diversity_penalty": 0.0,
|
| 137 |
+
"do_sample": false,
|
| 138 |
+
"drop_path_rate": 0.1,
|
| 139 |
+
"dropout": 0.0,
|
| 140 |
+
"early_stopping": false,
|
| 141 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 142 |
+
"eos_token_id": null,
|
| 143 |
+
"exponential_decay_length_penalty": null,
|
| 144 |
+
"finetuning_task": null,
|
| 145 |
+
"forced_bos_token_id": null,
|
| 146 |
+
"forced_eos_token_id": null,
|
| 147 |
+
"hidden_act": "gelu",
|
| 148 |
+
"hidden_size": 1024,
|
| 149 |
+
"id2label": {
|
| 150 |
+
"0": "LABEL_0",
|
| 151 |
+
"1": "LABEL_1"
|
| 152 |
+
},
|
| 153 |
+
"image_size": 448,
|
| 154 |
+
"initializer_factor": 1.0,
|
| 155 |
+
"initializer_range": 0.02,
|
| 156 |
+
"intermediate_size": 4096,
|
| 157 |
+
"is_decoder": false,
|
| 158 |
+
"is_encoder_decoder": false,
|
| 159 |
+
"label2id": {
|
| 160 |
+
"LABEL_0": 0,
|
| 161 |
+
"LABEL_1": 1
|
| 162 |
+
},
|
| 163 |
+
"layer_norm_eps": 1e-06,
|
| 164 |
+
"length_penalty": 1.0,
|
| 165 |
+
"max_length": 20,
|
| 166 |
+
"min_length": 0,
|
| 167 |
+
"model_type": "intern_vit_6b",
|
| 168 |
+
"no_repeat_ngram_size": 0,
|
| 169 |
+
"norm_type": "layer_norm",
|
| 170 |
+
"num_attention_heads": 16,
|
| 171 |
+
"num_beam_groups": 1,
|
| 172 |
+
"num_beams": 1,
|
| 173 |
+
"num_channels": 3,
|
| 174 |
+
"num_hidden_layers": 24,
|
| 175 |
+
"num_return_sequences": 1,
|
| 176 |
+
"output_attentions": false,
|
| 177 |
+
"output_hidden_states": false,
|
| 178 |
+
"output_scores": false,
|
| 179 |
+
"pad_token_id": null,
|
| 180 |
+
"patch_size": 14,
|
| 181 |
+
"prefix": null,
|
| 182 |
+
"problem_type": null,
|
| 183 |
+
"pruned_heads": {},
|
| 184 |
+
"qk_normalization": false,
|
| 185 |
+
"qkv_bias": true,
|
| 186 |
+
"remove_invalid_values": false,
|
| 187 |
+
"repetition_penalty": 1.0,
|
| 188 |
+
"return_dict": true,
|
| 189 |
+
"return_dict_in_generate": false,
|
| 190 |
+
"sep_token_id": null,
|
| 191 |
+
"suppress_tokens": null,
|
| 192 |
+
"task_specific_params": null,
|
| 193 |
+
"temperature": 1.0,
|
| 194 |
+
"tf_legacy_loss": false,
|
| 195 |
+
"tie_encoder_decoder": false,
|
| 196 |
+
"tie_word_embeddings": true,
|
| 197 |
+
"tokenizer_class": null,
|
| 198 |
+
"top_k": 50,
|
| 199 |
+
"top_p": 1.0,
|
| 200 |
+
"torch_dtype": "bfloat16",
|
| 201 |
+
"torchscript": false,
|
| 202 |
+
"transformers_version": "4.44.2",
|
| 203 |
+
"typical_p": 1.0,
|
| 204 |
+
"use_bfloat16": false,
|
| 205 |
+
"use_flash_attn": true
|
| 206 |
+
}
|
| 207 |
+
}
|
configuration_intern_vit.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
import os
|
| 7 |
+
from typing import Union
|
| 8 |
+
|
| 9 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
|
| 12 |
+
logger = logging.get_logger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class InternVisionConfig(PretrainedConfig):
|
| 16 |
+
r"""
|
| 17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
| 18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
| 19 |
+
|
| 20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 21 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 27 |
+
The size (resolution) of each patch.
|
| 28 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 29 |
+
The size (resolution) of each image.
|
| 30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 41 |
+
Number of hidden layers in the Transformer encoder.
|
| 42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 43 |
+
Whether to use flash attention mechanism.
|
| 44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 48 |
+
The epsilon used by the layer normalization layers.
|
| 49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 52 |
+
Dropout rate for stochastic depth.
|
| 53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 54 |
+
The dropout ratio for the attention probabilities.
|
| 55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 58 |
+
A factor for layer scale.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
model_type = 'intern_vit_6b'
|
| 62 |
+
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
num_channels=3,
|
| 66 |
+
patch_size=14,
|
| 67 |
+
image_size=224,
|
| 68 |
+
qkv_bias=False,
|
| 69 |
+
hidden_size=3200,
|
| 70 |
+
num_attention_heads=25,
|
| 71 |
+
intermediate_size=12800,
|
| 72 |
+
qk_normalization=True,
|
| 73 |
+
num_hidden_layers=48,
|
| 74 |
+
use_flash_attn=True,
|
| 75 |
+
hidden_act='gelu',
|
| 76 |
+
norm_type='rms_norm',
|
| 77 |
+
layer_norm_eps=1e-6,
|
| 78 |
+
dropout=0.0,
|
| 79 |
+
drop_path_rate=0.0,
|
| 80 |
+
attention_dropout=0.0,
|
| 81 |
+
initializer_range=0.02,
|
| 82 |
+
initializer_factor=0.1,
|
| 83 |
+
**kwargs,
|
| 84 |
+
):
|
| 85 |
+
super().__init__(**kwargs)
|
| 86 |
+
|
| 87 |
+
self.hidden_size = hidden_size
|
| 88 |
+
self.intermediate_size = intermediate_size
|
| 89 |
+
self.dropout = dropout
|
| 90 |
+
self.drop_path_rate = drop_path_rate
|
| 91 |
+
self.num_hidden_layers = num_hidden_layers
|
| 92 |
+
self.num_attention_heads = num_attention_heads
|
| 93 |
+
self.num_channels = num_channels
|
| 94 |
+
self.patch_size = patch_size
|
| 95 |
+
self.image_size = image_size
|
| 96 |
+
self.initializer_range = initializer_range
|
| 97 |
+
self.initializer_factor = initializer_factor
|
| 98 |
+
self.attention_dropout = attention_dropout
|
| 99 |
+
self.layer_norm_eps = layer_norm_eps
|
| 100 |
+
self.hidden_act = hidden_act
|
| 101 |
+
self.norm_type = norm_type
|
| 102 |
+
self.qkv_bias = qkv_bias
|
| 103 |
+
self.qk_normalization = qk_normalization
|
| 104 |
+
self.use_flash_attn = use_flash_attn
|
| 105 |
+
|
| 106 |
+
@classmethod
|
| 107 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
| 108 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 109 |
+
|
| 110 |
+
if 'vision_config' in config_dict:
|
| 111 |
+
config_dict = config_dict['vision_config']
|
| 112 |
+
|
| 113 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
| 114 |
+
logger.warning(
|
| 115 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 116 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internvl_chat.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import copy
|
| 8 |
+
|
| 9 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config, MistralConfig
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 14 |
+
|
| 15 |
+
logger = logging.get_logger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class InternVLChatConfig(PretrainedConfig):
|
| 19 |
+
model_type = 'internvl_chat'
|
| 20 |
+
is_composition = True
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
vision_config=None,
|
| 25 |
+
llm_config=None,
|
| 26 |
+
use_backbone_lora=0,
|
| 27 |
+
use_llm_lora=0,
|
| 28 |
+
select_layer=-1,
|
| 29 |
+
force_image_size=None,
|
| 30 |
+
downsample_ratio=0.5,
|
| 31 |
+
template=None,
|
| 32 |
+
dynamic_image_size=False,
|
| 33 |
+
use_thumbnail=False,
|
| 34 |
+
ps_version='v1',
|
| 35 |
+
min_dynamic_patch=1,
|
| 36 |
+
max_dynamic_patch=6,
|
| 37 |
+
**kwargs):
|
| 38 |
+
super().__init__(**kwargs)
|
| 39 |
+
|
| 40 |
+
if vision_config is None:
|
| 41 |
+
vision_config = {}
|
| 42 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
| 43 |
+
|
| 44 |
+
if llm_config is None:
|
| 45 |
+
llm_config = {}
|
| 46 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
| 47 |
+
|
| 48 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
| 49 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
| 50 |
+
self.llm_config = LlamaConfig(**llm_config)
|
| 51 |
+
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
| 52 |
+
self.llm_config = Qwen2Config(**llm_config)
|
| 53 |
+
elif llm_config['architectures'][0] == 'MistralForCausalLM':
|
| 54 |
+
self.llm_config = MistralConfig(**llm_config)
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
| 57 |
+
self.use_backbone_lora = use_backbone_lora
|
| 58 |
+
self.use_llm_lora = use_llm_lora
|
| 59 |
+
self.select_layer = select_layer
|
| 60 |
+
self.force_image_size = force_image_size
|
| 61 |
+
self.downsample_ratio = downsample_ratio
|
| 62 |
+
self.template = template
|
| 63 |
+
self.dynamic_image_size = dynamic_image_size
|
| 64 |
+
self.use_thumbnail = use_thumbnail
|
| 65 |
+
self.ps_version = ps_version # pixel shuffle version
|
| 66 |
+
self.min_dynamic_patch = min_dynamic_patch
|
| 67 |
+
self.max_dynamic_patch = max_dynamic_patch
|
| 68 |
+
|
| 69 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
| 70 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 71 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
| 72 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
| 73 |
+
|
| 74 |
+
def to_dict(self):
|
| 75 |
+
"""
|
| 76 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 80 |
+
"""
|
| 81 |
+
output = copy.deepcopy(self.__dict__)
|
| 82 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 83 |
+
output['llm_config'] = self.llm_config.to_dict()
|
| 84 |
+
output['model_type'] = self.__class__.model_type
|
| 85 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
| 86 |
+
output['use_llm_lora'] = self.use_llm_lora
|
| 87 |
+
output['select_layer'] = self.select_layer
|
| 88 |
+
output['force_image_size'] = self.force_image_size
|
| 89 |
+
output['downsample_ratio'] = self.downsample_ratio
|
| 90 |
+
output['template'] = self.template
|
| 91 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
| 92 |
+
output['use_thumbnail'] = self.use_thumbnail
|
| 93 |
+
output['ps_version'] = self.ps_version
|
| 94 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
| 95 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
| 96 |
+
|
| 97 |
+
return output
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.44.2"
|
| 4 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd8ea345c5dafd70b0ee50dc78e8701081a2e7cb280fe7553918e803c2cb5d75
|
| 3 |
+
size 4913641320
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12b426b0f63b4105514318f82acf88014867a060c1aea28962d39af028c7850b
|
| 3 |
+
size 4915917648
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52d3e3c101706349f621c20adc2b40525a7f64d8c7b43498fe8f413a215990bb
|
| 3 |
+
size 4999820928
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37982cb28c1485de237b93c01d0c09d4c4df7753aa13201cee3044dcce7160fc
|
| 3 |
+
size 1906387512
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16735688704
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"language_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 27 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 99 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 100 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 103 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 110 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 111 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 113 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 114 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 115 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 116 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 117 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 118 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 125 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 216 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 224 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 225 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 226 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 227 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 228 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 229 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 234 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 235 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 239 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 240 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 242 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 243 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 244 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 245 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 246 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 247 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 248 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 249 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 250 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 251 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 252 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 253 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 254 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 255 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 256 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 257 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 258 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 259 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 260 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 270 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 271 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 273 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 274 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 278 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 279 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 280 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 281 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 282 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 283 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 284 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 287 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 290 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 293 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 294 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 295 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 296 |
+
"language_model.model.norm.weight": "model-00004-of-00004.safetensors",
|
| 297 |
+
"mlp1.0.bias": "model-00004-of-00004.safetensors",
|
| 298 |
+
"mlp1.0.weight": "model-00004-of-00004.safetensors",
|
| 299 |
+
"mlp1.1.bias": "model-00004-of-00004.safetensors",
|
| 300 |
+
"mlp1.1.weight": "model-00004-of-00004.safetensors",
|
| 301 |
+
"mlp1.3.bias": "model-00004-of-00004.safetensors",
|
| 302 |
+
"mlp1.3.weight": "model-00004-of-00004.safetensors",
|
| 303 |
+
"vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
|
| 304 |
+
"vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
|
| 307 |
+
"vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 308 |
+
"vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 310 |
+
"vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
|
| 312 |
+
"vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
|
| 313 |
+
"vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 316 |
+
"vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 317 |
+
"vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
|
| 318 |
+
"vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
|
| 319 |
+
"vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
|
| 320 |
+
"vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
|
| 321 |
+
"vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 322 |
+
"vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 323 |
+
"vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 324 |
+
"vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 325 |
+
"vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
|
| 326 |
+
"vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
|
| 327 |
+
"vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 328 |
+
"vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 329 |
+
"vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 330 |
+
"vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 331 |
+
"vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
|
| 332 |
+
"vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
|
| 333 |
+
"vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
|
| 334 |
+
"vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
|
| 335 |
+
"vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 336 |
+
"vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 337 |
+
"vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 338 |
+
"vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 339 |
+
"vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
|
| 340 |
+
"vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
|
| 341 |
+
"vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 342 |
+
"vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 343 |
+
"vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 344 |
+
"vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 345 |
+
"vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
|
| 346 |
+
"vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
|
| 348 |
+
"vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 352 |
+
"vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
|
| 354 |
+
"vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
|
| 355 |
+
"vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 356 |
+
"vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 358 |
+
"vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
|
| 360 |
+
"vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
|
| 368 |
+
"vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
|
| 369 |
+
"vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 372 |
+
"vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
|
| 376 |
+
"vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 378 |
+
"vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 380 |
+
"vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
|
| 382 |
+
"vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
|
| 383 |
+
"vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 384 |
+
"vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 386 |
+
"vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 392 |
+
"vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
|
| 396 |
+
"vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
|
| 397 |
+
"vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 400 |
+
"vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
|
| 402 |
+
"vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
|
| 404 |
+
"vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
|
| 410 |
+
"vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
|
| 411 |
+
"vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 412 |
+
"vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
|
| 416 |
+
"vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
|
| 418 |
+
"vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 420 |
+
"vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
|
| 424 |
+
"vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
|
| 425 |
+
"vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 426 |
+
"vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 428 |
+
"vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
|
| 430 |
+
"vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
|
| 432 |
+
"vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
|
| 438 |
+
"vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
|
| 439 |
+
"vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 440 |
+
"vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
|
| 444 |
+
"vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
|
| 452 |
+
"vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
|
| 453 |
+
"vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 454 |
+
"vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 456 |
+
"vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
|
| 458 |
+
"vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
|
| 459 |
+
"vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
|
| 460 |
+
"vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
|
| 461 |
+
"vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 462 |
+
"vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 463 |
+
"vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 464 |
+
"vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
|
| 466 |
+
"vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
|
| 467 |
+
"vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 468 |
+
"vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
|
| 472 |
+
"vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
|
| 473 |
+
"vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
|
| 474 |
+
"vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
|
| 475 |
+
"vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 476 |
+
"vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 478 |
+
"vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
|
| 480 |
+
"vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
|
| 481 |
+
"vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 484 |
+
"vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 485 |
+
"vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
|
| 486 |
+
"vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
|
| 487 |
+
"vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
|
| 488 |
+
"vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 490 |
+
"vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 492 |
+
"vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
|
| 494 |
+
"vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
|
| 495 |
+
"vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 496 |
+
"vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 497 |
+
"vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 498 |
+
"vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 499 |
+
"vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
|
| 500 |
+
"vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
|
| 502 |
+
"vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 504 |
+
"vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
|
| 508 |
+
"vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
|
| 509 |
+
"vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 510 |
+
"vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 511 |
+
"vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 512 |
+
"vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 513 |
+
"vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
|
| 514 |
+
"vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
|
| 516 |
+
"vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
|
| 517 |
+
"vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 520 |
+
"vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 521 |
+
"vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
|
| 522 |
+
"vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
|
| 523 |
+
"vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 524 |
+
"vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 525 |
+
"vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 526 |
+
"vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 527 |
+
"vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
|
| 528 |
+
"vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
|
| 529 |
+
"vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
|
| 530 |
+
"vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
|
| 531 |
+
"vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 532 |
+
"vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 533 |
+
"vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 534 |
+
"vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 535 |
+
"vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
|
| 536 |
+
"vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
|
| 537 |
+
"vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 538 |
+
"vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 539 |
+
"vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 540 |
+
"vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 541 |
+
"vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
|
| 542 |
+
"vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
|
| 543 |
+
"vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
|
| 544 |
+
"vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
|
| 545 |
+
"vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 546 |
+
"vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 547 |
+
"vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 548 |
+
"vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 549 |
+
"vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
|
| 550 |
+
"vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
|
| 551 |
+
"vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 552 |
+
"vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 553 |
+
"vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 554 |
+
"vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 555 |
+
"vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
|
| 556 |
+
"vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
|
| 557 |
+
"vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
|
| 558 |
+
"vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
|
| 559 |
+
"vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 560 |
+
"vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 561 |
+
"vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 562 |
+
"vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 563 |
+
"vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
|
| 564 |
+
"vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
|
| 565 |
+
"vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 566 |
+
"vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 567 |
+
"vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 568 |
+
"vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 569 |
+
"vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
|
| 570 |
+
"vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
|
| 571 |
+
"vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
|
| 572 |
+
"vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
|
| 573 |
+
"vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 574 |
+
"vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 575 |
+
"vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 576 |
+
"vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 577 |
+
"vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
|
| 578 |
+
"vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
|
| 579 |
+
"vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 580 |
+
"vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 581 |
+
"vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 582 |
+
"vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 583 |
+
"vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
|
| 584 |
+
"vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
|
| 585 |
+
"vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
|
| 586 |
+
"vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
|
| 587 |
+
"vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 588 |
+
"vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 589 |
+
"vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 590 |
+
"vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 591 |
+
"vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
|
| 592 |
+
"vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
|
| 593 |
+
"vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 594 |
+
"vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 595 |
+
"vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 596 |
+
"vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 597 |
+
"vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
|
| 598 |
+
"vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
|
| 599 |
+
"vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
|
| 600 |
+
"vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
|
| 601 |
+
"vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 602 |
+
"vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 603 |
+
"vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 604 |
+
"vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 605 |
+
"vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
|
| 606 |
+
"vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
|
| 607 |
+
"vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 608 |
+
"vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 609 |
+
"vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 610 |
+
"vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 611 |
+
"vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
|
| 612 |
+
"vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
|
| 613 |
+
"vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
|
| 614 |
+
"vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
|
| 615 |
+
"vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 616 |
+
"vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 617 |
+
"vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 618 |
+
"vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 619 |
+
"vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
|
| 620 |
+
"vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
|
| 621 |
+
"vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 622 |
+
"vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 623 |
+
"vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 624 |
+
"vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 625 |
+
"vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
|
| 626 |
+
"vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
|
| 628 |
+
"vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 630 |
+
"vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 631 |
+
"vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 632 |
+
"vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
|
| 634 |
+
"vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
|
| 635 |
+
"vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 636 |
+
"vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
|
| 640 |
+
"vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
|
| 641 |
+
"vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
|
| 642 |
+
"vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
|
| 643 |
+
}
|
| 644 |
+
}
|
modeling_intern_vit.py
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
from typing import Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from timm.models.layers import DropPath
|
| 13 |
+
from torch import nn
|
| 14 |
+
from transformers.activations import ACT2FN
|
| 15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 16 |
+
BaseModelOutputWithPooling)
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 24 |
+
from flash_attn.flash_attn_interface import \
|
| 25 |
+
flash_attn_varlen_qkvpacked_func
|
| 26 |
+
has_flash_attn = True
|
| 27 |
+
except:
|
| 28 |
+
print('FlashAttention2 is not installed.')
|
| 29 |
+
has_flash_attn = False
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FlashAttention(nn.Module):
|
| 35 |
+
"""Implement the scaled dot product attention with softmax.
|
| 36 |
+
Arguments
|
| 37 |
+
---------
|
| 38 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 39 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 40 |
+
runtime)
|
| 41 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 42 |
+
(default: 0.0)
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.softmax_scale = softmax_scale
|
| 48 |
+
self.dropout_p = attention_dropout
|
| 49 |
+
|
| 50 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 51 |
+
max_s=None, need_weights=False):
|
| 52 |
+
"""Implements the multihead softmax attention.
|
| 53 |
+
Arguments
|
| 54 |
+
---------
|
| 55 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 56 |
+
if unpadded: (nnz, 3, h, d)
|
| 57 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 58 |
+
"""
|
| 59 |
+
assert not need_weights
|
| 60 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 61 |
+
assert qkv.is_cuda
|
| 62 |
+
|
| 63 |
+
if cu_seqlens is None:
|
| 64 |
+
batch_size = qkv.shape[0]
|
| 65 |
+
seqlen = qkv.shape[1]
|
| 66 |
+
if key_padding_mask is None:
|
| 67 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 68 |
+
max_s = seqlen
|
| 69 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 70 |
+
device=qkv.device)
|
| 71 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 72 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 73 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 74 |
+
)
|
| 75 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 76 |
+
else:
|
| 77 |
+
nheads = qkv.shape[-2]
|
| 78 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 79 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 80 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 81 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
| 82 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 83 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 84 |
+
)
|
| 85 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 86 |
+
indices, batch_size, seqlen),
|
| 87 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 88 |
+
else:
|
| 89 |
+
assert max_s is not None
|
| 90 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 91 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 92 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
return output, None
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class InternRMSNorm(nn.Module):
|
| 99 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 102 |
+
self.variance_epsilon = eps
|
| 103 |
+
|
| 104 |
+
def forward(self, hidden_states):
|
| 105 |
+
input_dtype = hidden_states.dtype
|
| 106 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 107 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 108 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 109 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
try:
|
| 113 |
+
from apex.normalization import FusedRMSNorm
|
| 114 |
+
|
| 115 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 116 |
+
|
| 117 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 118 |
+
except ImportError:
|
| 119 |
+
# using the normal InternRMSNorm
|
| 120 |
+
pass
|
| 121 |
+
except Exception:
|
| 122 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 123 |
+
pass
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
NORM2FN = {
|
| 127 |
+
'rms_norm': InternRMSNorm,
|
| 128 |
+
'layer_norm': nn.LayerNorm,
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class InternVisionEmbeddings(nn.Module):
|
| 133 |
+
def __init__(self, config: InternVisionConfig):
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.config = config
|
| 136 |
+
self.embed_dim = config.hidden_size
|
| 137 |
+
self.image_size = config.image_size
|
| 138 |
+
self.patch_size = config.patch_size
|
| 139 |
+
|
| 140 |
+
self.class_embedding = nn.Parameter(
|
| 141 |
+
torch.randn(1, 1, self.embed_dim),
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
self.patch_embedding = nn.Conv2d(
|
| 145 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 149 |
+
self.num_positions = self.num_patches + 1
|
| 150 |
+
|
| 151 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 152 |
+
|
| 153 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 154 |
+
target_dtype = pos_embed.dtype
|
| 155 |
+
pos_embed = pos_embed.float().reshape(
|
| 156 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 157 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
| 158 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 159 |
+
return pos_embed
|
| 160 |
+
|
| 161 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 162 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 163 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 164 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 165 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 166 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 167 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 168 |
+
position_embedding = torch.cat([
|
| 169 |
+
self.position_embedding[:, :1, :],
|
| 170 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 171 |
+
], dim=1)
|
| 172 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 173 |
+
return embeddings
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class InternAttention(nn.Module):
|
| 177 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 178 |
+
|
| 179 |
+
def __init__(self, config: InternVisionConfig):
|
| 180 |
+
super().__init__()
|
| 181 |
+
self.config = config
|
| 182 |
+
self.embed_dim = config.hidden_size
|
| 183 |
+
self.num_heads = config.num_attention_heads
|
| 184 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 185 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 186 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 187 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 188 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 189 |
+
raise ValueError(
|
| 190 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 191 |
+
f' {self.num_heads}).'
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.scale = self.head_dim ** -0.5
|
| 195 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 196 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 197 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 198 |
+
|
| 199 |
+
self.qk_normalization = config.qk_normalization
|
| 200 |
+
|
| 201 |
+
if self.qk_normalization:
|
| 202 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 203 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 204 |
+
|
| 205 |
+
if self.use_flash_attn:
|
| 206 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 207 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 208 |
+
|
| 209 |
+
def _naive_attn(self, x):
|
| 210 |
+
B, N, C = x.shape
|
| 211 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 212 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 213 |
+
|
| 214 |
+
if self.qk_normalization:
|
| 215 |
+
B_, H_, N_, D_ = q.shape
|
| 216 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 217 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 218 |
+
|
| 219 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 220 |
+
attn = attn.softmax(dim=-1)
|
| 221 |
+
attn = self.attn_drop(attn)
|
| 222 |
+
|
| 223 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 224 |
+
x = self.proj(x)
|
| 225 |
+
x = self.proj_drop(x)
|
| 226 |
+
return x
|
| 227 |
+
|
| 228 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 229 |
+
qkv = self.qkv(x)
|
| 230 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 231 |
+
|
| 232 |
+
if self.qk_normalization:
|
| 233 |
+
q, k, v = qkv.unbind(2)
|
| 234 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 235 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 236 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 237 |
+
|
| 238 |
+
context, _ = self.inner_attn(
|
| 239 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 240 |
+
)
|
| 241 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 242 |
+
outs = self.proj_drop(outs)
|
| 243 |
+
return outs
|
| 244 |
+
|
| 245 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 246 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 247 |
+
return x
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class InternMLP(nn.Module):
|
| 251 |
+
def __init__(self, config: InternVisionConfig):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.config = config
|
| 254 |
+
self.act = ACT2FN[config.hidden_act]
|
| 255 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 256 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 257 |
+
|
| 258 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 259 |
+
hidden_states = self.fc1(hidden_states)
|
| 260 |
+
hidden_states = self.act(hidden_states)
|
| 261 |
+
hidden_states = self.fc2(hidden_states)
|
| 262 |
+
return hidden_states
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class InternVisionEncoderLayer(nn.Module):
|
| 266 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
| 267 |
+
super().__init__()
|
| 268 |
+
self.embed_dim = config.hidden_size
|
| 269 |
+
self.intermediate_size = config.intermediate_size
|
| 270 |
+
self.norm_type = config.norm_type
|
| 271 |
+
|
| 272 |
+
self.attn = InternAttention(config)
|
| 273 |
+
self.mlp = InternMLP(config)
|
| 274 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 275 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 276 |
+
|
| 277 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 278 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 279 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 280 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 281 |
+
|
| 282 |
+
def forward(
|
| 283 |
+
self,
|
| 284 |
+
hidden_states: torch.Tensor,
|
| 285 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 286 |
+
"""
|
| 287 |
+
Args:
|
| 288 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 289 |
+
"""
|
| 290 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
| 291 |
+
|
| 292 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
| 293 |
+
|
| 294 |
+
return hidden_states
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class InternVisionEncoder(nn.Module):
|
| 298 |
+
"""
|
| 299 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 300 |
+
[`InternEncoderLayer`].
|
| 301 |
+
|
| 302 |
+
Args:
|
| 303 |
+
config (`InternConfig`):
|
| 304 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 305 |
+
"""
|
| 306 |
+
|
| 307 |
+
def __init__(self, config: InternVisionConfig):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.config = config
|
| 310 |
+
# stochastic depth decay rule
|
| 311 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 312 |
+
self.layers = nn.ModuleList([
|
| 313 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 314 |
+
self.gradient_checkpointing = True
|
| 315 |
+
|
| 316 |
+
def forward(
|
| 317 |
+
self,
|
| 318 |
+
inputs_embeds,
|
| 319 |
+
output_hidden_states: Optional[bool] = None,
|
| 320 |
+
return_dict: Optional[bool] = None,
|
| 321 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 322 |
+
r"""
|
| 323 |
+
Args:
|
| 324 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 325 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 326 |
+
output_hidden_states (`bool`, *optional*):
|
| 327 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 328 |
+
for more detail.
|
| 329 |
+
return_dict (`bool`, *optional*):
|
| 330 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 331 |
+
"""
|
| 332 |
+
output_hidden_states = (
|
| 333 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 334 |
+
)
|
| 335 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 336 |
+
|
| 337 |
+
encoder_states = () if output_hidden_states else None
|
| 338 |
+
hidden_states = inputs_embeds
|
| 339 |
+
|
| 340 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 341 |
+
if output_hidden_states:
|
| 342 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 343 |
+
if self.gradient_checkpointing and self.training:
|
| 344 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 345 |
+
encoder_layer,
|
| 346 |
+
hidden_states)
|
| 347 |
+
else:
|
| 348 |
+
layer_outputs = encoder_layer(
|
| 349 |
+
hidden_states,
|
| 350 |
+
)
|
| 351 |
+
hidden_states = layer_outputs
|
| 352 |
+
|
| 353 |
+
if output_hidden_states:
|
| 354 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 355 |
+
|
| 356 |
+
if not return_dict:
|
| 357 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 358 |
+
return BaseModelOutput(
|
| 359 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
class InternVisionModel(PreTrainedModel):
|
| 364 |
+
main_input_name = 'pixel_values'
|
| 365 |
+
_supports_flash_attn_2 = True
|
| 366 |
+
config_class = InternVisionConfig
|
| 367 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
| 368 |
+
|
| 369 |
+
def __init__(self, config: InternVisionConfig):
|
| 370 |
+
super().__init__(config)
|
| 371 |
+
self.config = config
|
| 372 |
+
|
| 373 |
+
self.embeddings = InternVisionEmbeddings(config)
|
| 374 |
+
self.encoder = InternVisionEncoder(config)
|
| 375 |
+
|
| 376 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 377 |
+
pos_emb = self.embeddings.position_embedding
|
| 378 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 379 |
+
cls_emb = pos_emb[:, :1, :]
|
| 380 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 381 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 382 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 383 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 384 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 385 |
+
self.embeddings.image_size = new_size
|
| 386 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 387 |
+
|
| 388 |
+
def get_input_embeddings(self):
|
| 389 |
+
return self.embeddings
|
| 390 |
+
|
| 391 |
+
def forward(
|
| 392 |
+
self,
|
| 393 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 394 |
+
output_hidden_states: Optional[bool] = None,
|
| 395 |
+
return_dict: Optional[bool] = None,
|
| 396 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 397 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 398 |
+
output_hidden_states = (
|
| 399 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 400 |
+
)
|
| 401 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 402 |
+
|
| 403 |
+
if pixel_values is None and pixel_embeds is None:
|
| 404 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 405 |
+
|
| 406 |
+
if pixel_embeds is not None:
|
| 407 |
+
hidden_states = pixel_embeds
|
| 408 |
+
else:
|
| 409 |
+
if len(pixel_values.shape) == 4:
|
| 410 |
+
hidden_states = self.embeddings(pixel_values)
|
| 411 |
+
else:
|
| 412 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 413 |
+
encoder_outputs = self.encoder(
|
| 414 |
+
inputs_embeds=hidden_states,
|
| 415 |
+
output_hidden_states=output_hidden_states,
|
| 416 |
+
return_dict=return_dict,
|
| 417 |
+
)
|
| 418 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 419 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 420 |
+
|
| 421 |
+
if not return_dict:
|
| 422 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 423 |
+
|
| 424 |
+
return BaseModelOutputWithPooling(
|
| 425 |
+
last_hidden_state=last_hidden_state,
|
| 426 |
+
pooler_output=pooled_output,
|
| 427 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 428 |
+
attentions=encoder_outputs.attentions,
|
| 429 |
+
)
|
modeling_internvl_chat.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import Any, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch.utils.checkpoint
|
| 10 |
+
import transformers
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import CrossEntropyLoss
|
| 13 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
| 14 |
+
Qwen2ForCausalLM, MistralForCausalLM)
|
| 15 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.utils import ModelOutput, logging
|
| 18 |
+
|
| 19 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
| 20 |
+
from mtkresearch.llm.prompt import MRPromptV3
|
| 21 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def version_cmp(v1, v2, op='eq'):
|
| 27 |
+
import operator
|
| 28 |
+
|
| 29 |
+
from packaging import version
|
| 30 |
+
op_func = getattr(operator, op)
|
| 31 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class InternVLChatModel(PreTrainedModel):
|
| 35 |
+
config_class = InternVLChatConfig
|
| 36 |
+
main_input_name = 'pixel_values'
|
| 37 |
+
base_model_prefix = 'language_model'
|
| 38 |
+
_supports_flash_attn_2 = True
|
| 39 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer', 'MistralDecoderLayer']
|
| 40 |
+
|
| 41 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
| 42 |
+
super().__init__(config)
|
| 43 |
+
|
| 44 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
| 45 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
| 46 |
+
patch_size = config.vision_config.patch_size
|
| 47 |
+
self.patch_size = patch_size
|
| 48 |
+
self.select_layer = config.select_layer
|
| 49 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 50 |
+
self.downsample_ratio = config.downsample_ratio
|
| 51 |
+
self.ps_version = config.ps_version
|
| 52 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
| 53 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
| 54 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
| 55 |
+
|
| 56 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
| 57 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 58 |
+
if vision_model is not None:
|
| 59 |
+
self.vision_model = vision_model
|
| 60 |
+
else:
|
| 61 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
| 62 |
+
if language_model is not None:
|
| 63 |
+
self.language_model = language_model
|
| 64 |
+
else:
|
| 65 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
| 66 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
| 67 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
| 68 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
| 69 |
+
elif config.llm_config.architectures[0] == 'MistralForCausalLM':
|
| 70 |
+
self.language_model = MistralForCausalLM(config.llm_config)
|
| 71 |
+
else:
|
| 72 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
| 73 |
+
|
| 74 |
+
vit_hidden_size = config.vision_config.hidden_size
|
| 75 |
+
llm_hidden_size = config.llm_config.hidden_size
|
| 76 |
+
|
| 77 |
+
self.mlp1 = nn.Sequential(
|
| 78 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
| 79 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
| 80 |
+
nn.GELU(),
|
| 81 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
self.img_context_token_id = None
|
| 85 |
+
self.mr_prompt = MRPromptV3()
|
| 86 |
+
|
| 87 |
+
def forward(
|
| 88 |
+
self,
|
| 89 |
+
pixel_values: torch.FloatTensor,
|
| 90 |
+
input_ids: torch.LongTensor = None,
|
| 91 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 92 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 93 |
+
image_flags: Optional[torch.LongTensor] = None,
|
| 94 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 95 |
+
labels: Optional[torch.LongTensor] = None,
|
| 96 |
+
use_cache: Optional[bool] = None,
|
| 97 |
+
output_attentions: Optional[bool] = None,
|
| 98 |
+
output_hidden_states: Optional[bool] = None,
|
| 99 |
+
return_dict: Optional[bool] = None,
|
| 100 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 101 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 102 |
+
|
| 103 |
+
image_flags = image_flags.squeeze(-1)
|
| 104 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
| 105 |
+
|
| 106 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 107 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 108 |
+
vit_batch_size = pixel_values.shape[0]
|
| 109 |
+
|
| 110 |
+
B, N, C = input_embeds.shape
|
| 111 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 112 |
+
|
| 113 |
+
if torch.distributed.get_rank() == 0:
|
| 114 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
| 115 |
+
|
| 116 |
+
input_ids = input_ids.reshape(B * N)
|
| 117 |
+
selected = (input_ids == self.img_context_token_id)
|
| 118 |
+
try:
|
| 119 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
| 120 |
+
except Exception as e:
|
| 121 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
| 122 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
| 123 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
| 124 |
+
n_token = selected.sum()
|
| 125 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
| 126 |
+
|
| 127 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 128 |
+
|
| 129 |
+
outputs = self.language_model(
|
| 130 |
+
inputs_embeds=input_embeds,
|
| 131 |
+
attention_mask=attention_mask,
|
| 132 |
+
position_ids=position_ids,
|
| 133 |
+
past_key_values=past_key_values,
|
| 134 |
+
use_cache=use_cache,
|
| 135 |
+
output_attentions=output_attentions,
|
| 136 |
+
output_hidden_states=output_hidden_states,
|
| 137 |
+
return_dict=return_dict,
|
| 138 |
+
)
|
| 139 |
+
logits = outputs.logits
|
| 140 |
+
|
| 141 |
+
loss = None
|
| 142 |
+
if labels is not None:
|
| 143 |
+
# Shift so that tokens < n predict n
|
| 144 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 145 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 146 |
+
# Flatten the tokens
|
| 147 |
+
loss_fct = CrossEntropyLoss()
|
| 148 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
| 149 |
+
shift_labels = shift_labels.view(-1)
|
| 150 |
+
# Enable model parallelism
|
| 151 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 152 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 153 |
+
|
| 154 |
+
if not return_dict:
|
| 155 |
+
output = (logits,) + outputs[1:]
|
| 156 |
+
return (loss,) + output if loss is not None else output
|
| 157 |
+
|
| 158 |
+
return CausalLMOutputWithPast(
|
| 159 |
+
loss=loss,
|
| 160 |
+
logits=logits,
|
| 161 |
+
past_key_values=outputs.past_key_values,
|
| 162 |
+
hidden_states=outputs.hidden_states,
|
| 163 |
+
attentions=outputs.attentions,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
| 167 |
+
n, w, h, c = x.size()
|
| 168 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
| 169 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
| 170 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
| 171 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 172 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
| 173 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
| 174 |
+
int(c / (scale_factor * scale_factor)))
|
| 175 |
+
if self.ps_version == 'v1':
|
| 176 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
| 177 |
+
'which results in a transposed image.')
|
| 178 |
+
else:
|
| 179 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 180 |
+
return x
|
| 181 |
+
|
| 182 |
+
def extract_feature(self, pixel_values):
|
| 183 |
+
if self.select_layer == -1:
|
| 184 |
+
vit_embeds = self.vision_model(
|
| 185 |
+
pixel_values=pixel_values,
|
| 186 |
+
output_hidden_states=False,
|
| 187 |
+
return_dict=True).last_hidden_state
|
| 188 |
+
else:
|
| 189 |
+
vit_embeds = self.vision_model(
|
| 190 |
+
pixel_values=pixel_values,
|
| 191 |
+
output_hidden_states=True,
|
| 192 |
+
return_dict=True).hidden_states[self.select_layer]
|
| 193 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
| 194 |
+
|
| 195 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
| 196 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
| 197 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
| 198 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
| 199 |
+
vit_embeds = self.mlp1(vit_embeds)
|
| 200 |
+
return vit_embeds
|
| 201 |
+
|
| 202 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
| 203 |
+
num_patches_list=None, IMG_START_TOKEN='<|start_img|>', IMG_END_TOKEN='<|end_img|>', IMG_CONTEXT_TOKEN='<|img|>',
|
| 204 |
+
verbose=False):
|
| 205 |
+
|
| 206 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
| 207 |
+
question = '<image>\n' + question
|
| 208 |
+
|
| 209 |
+
if num_patches_list is None:
|
| 210 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
| 211 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
| 212 |
+
|
| 213 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 214 |
+
self.img_context_token_id = img_context_token_id
|
| 215 |
+
|
| 216 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(self.mr_prompt.eos_token)
|
| 217 |
+
|
| 218 |
+
conversations = [
|
| 219 |
+
{
|
| 220 |
+
"role": "user",
|
| 221 |
+
"content": [
|
| 222 |
+
{
|
| 223 |
+
"type": "text",
|
| 224 |
+
"text": question
|
| 225 |
+
}
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
]
|
| 229 |
+
query = self.mr_prompt.get_prompt(conversations)
|
| 230 |
+
|
| 231 |
+
if verbose and pixel_values is not None:
|
| 232 |
+
image_bs = pixel_values.shape[0]
|
| 233 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 234 |
+
|
| 235 |
+
for num_patches in num_patches_list:
|
| 236 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 237 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 238 |
+
|
| 239 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
| 240 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
| 241 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
| 242 |
+
generation_config['eos_token_id'] = 128009
|
| 243 |
+
generation_output = self.generate(
|
| 244 |
+
pixel_values=pixel_values,
|
| 245 |
+
input_ids=input_ids,
|
| 246 |
+
attention_mask=attention_mask,
|
| 247 |
+
**generation_config
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
| 251 |
+
return response
|
| 252 |
+
|
| 253 |
+
def predict_choice_distribution(
|
| 254 |
+
self,
|
| 255 |
+
tokenizer,
|
| 256 |
+
pixel_values,
|
| 257 |
+
question,
|
| 258 |
+
generation_config,
|
| 259 |
+
num_patches_list=None,
|
| 260 |
+
IMG_START_TOKEN='<|start_img|>',
|
| 261 |
+
IMG_END_TOKEN='<|end_img|>',
|
| 262 |
+
IMG_CONTEXT_TOKEN='<|img|>',
|
| 263 |
+
verbose=False,
|
| 264 |
+
):
|
| 265 |
+
|
| 266 |
+
if num_patches_list is None:
|
| 267 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
| 268 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
| 269 |
+
|
| 270 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 271 |
+
self.img_context_token_id = img_context_token_id
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
if verbose and pixel_values is not None:
|
| 275 |
+
image_bs = pixel_values.shape[0]
|
| 276 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 277 |
+
|
| 278 |
+
for num_patches in num_patches_list:
|
| 279 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 280 |
+
question = question.replace('<image>', image_tokens, 1)
|
| 281 |
+
model_inputs = tokenizer(question, return_tensors='pt', add_special_tokens=True)
|
| 282 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
| 283 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
| 284 |
+
|
| 285 |
+
if pixel_values is not None:
|
| 286 |
+
# Extract visual features
|
| 287 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 288 |
+
# Get input embeddings
|
| 289 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 290 |
+
B, N, C = input_embeds.shape
|
| 291 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 292 |
+
|
| 293 |
+
input_ids_flat = input_ids.reshape(B * N)
|
| 294 |
+
selected = (input_ids_flat == self.img_context_token_id)
|
| 295 |
+
assert selected.sum() != 0, "No image context tokens found in input_ids."
|
| 296 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 297 |
+
|
| 298 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 299 |
+
else:
|
| 300 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 301 |
+
|
| 302 |
+
outputs = self.language_model(
|
| 303 |
+
inputs_embeds=input_embeds,
|
| 304 |
+
attention_mask=attention_mask,
|
| 305 |
+
return_dict=True,
|
| 306 |
+
)
|
| 307 |
+
outputs_id = self.language_model.generate(
|
| 308 |
+
inputs_embeds=input_embeds,
|
| 309 |
+
attention_mask=attention_mask,
|
| 310 |
+
generation_config=generation_config,
|
| 311 |
+
output_hidden_states=output_hidden_states,
|
| 312 |
+
# return_dict=return_dict,
|
| 313 |
+
use_cache=True,
|
| 314 |
+
**generate_kwargs,
|
| 315 |
+
)
|
| 316 |
+
response = tokenizer.batch_decode(outputs_id, skip_special_tokens=True)[0]
|
| 317 |
+
|
| 318 |
+
logits = outputs.logits # Shape: (batch_size, seq_length, vocab_size)
|
| 319 |
+
|
| 320 |
+
# Get the logits for the next token (after 'The answer is:')
|
| 321 |
+
next_token_logits = logits[:, -1, :] # Shape: (batch_size, vocab_size)
|
| 322 |
+
|
| 323 |
+
# Get token IDs for 'A', 'B', 'C', 'D'
|
| 324 |
+
choice_tokens = ['A', 'B', 'C', 'D']
|
| 325 |
+
choice_token_ids = tokenizer.convert_tokens_to_ids(choice_tokens)
|
| 326 |
+
|
| 327 |
+
# Extract the logits corresponding to these tokens
|
| 328 |
+
choice_logits = next_token_logits[:, choice_token_ids] # Shape: (batch_size, 4)
|
| 329 |
+
|
| 330 |
+
# Apply softmax to get probabilities
|
| 331 |
+
choice_probs = torch.softmax(choice_logits, dim=-1)
|
| 332 |
+
|
| 333 |
+
max_prob_indices = torch.argmax(choice_probs, dim=-1)
|
| 334 |
+
max_prob_tokens = [choice_tokens[idx] for idx in max_prob_indices]
|
| 335 |
+
|
| 336 |
+
return max_prob_tokens, response
|
| 337 |
+
|
| 338 |
+
@torch.no_grad()
|
| 339 |
+
def generate(
|
| 340 |
+
self,
|
| 341 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 342 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
| 343 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 344 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
| 345 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 346 |
+
output_hidden_states: Optional[bool] = None,
|
| 347 |
+
return_dict: Optional[bool] = None,
|
| 348 |
+
**generate_kwargs,
|
| 349 |
+
) -> torch.LongTensor:
|
| 350 |
+
|
| 351 |
+
assert self.img_context_token_id is not None
|
| 352 |
+
if pixel_values is not None:
|
| 353 |
+
if visual_features is not None:
|
| 354 |
+
vit_embeds = visual_features
|
| 355 |
+
else:
|
| 356 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 357 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 358 |
+
B, N, C = input_embeds.shape
|
| 359 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 360 |
+
|
| 361 |
+
input_ids = input_ids.reshape(B * N)
|
| 362 |
+
selected = (input_ids == self.img_context_token_id)
|
| 363 |
+
assert selected.sum() != 0
|
| 364 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 365 |
+
|
| 366 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 367 |
+
else:
|
| 368 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 369 |
+
|
| 370 |
+
outputs = self.language_model.generate(
|
| 371 |
+
inputs_embeds=input_embeds,
|
| 372 |
+
attention_mask=attention_mask,
|
| 373 |
+
generation_config=generation_config,
|
| 374 |
+
output_hidden_states=output_hidden_states,
|
| 375 |
+
# return_dict=return_dict,
|
| 376 |
+
use_cache=True,
|
| 377 |
+
**generate_kwargs,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
return outputs
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin_of_text|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|eot_id|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
}
|
| 16 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"128000": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128001": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128002": {
|
| 20 |
+
"content": "<|reserved_special_token_0|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128003": {
|
| 28 |
+
"content": "<|reserved_special_token_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128004": {
|
| 36 |
+
"content": "<|finetune_right_pad_id|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128005": {
|
| 44 |
+
"content": "<|reserved_special_token_2|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128006": {
|
| 52 |
+
"content": "<|start_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128007": {
|
| 60 |
+
"content": "<|end_header_id|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128008": {
|
| 68 |
+
"content": "<|eom_id|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128009": {
|
| 76 |
+
"content": "<|eot_id|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128010": {
|
| 84 |
+
"content": "<|python_tag|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128011": {
|
| 92 |
+
"content": "<|reserved_special_token_3|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128012": {
|
| 100 |
+
"content": "<|reserved_special_token_4|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128013": {
|
| 108 |
+
"content": "<|reserved_special_token_5|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128014": {
|
| 116 |
+
"content": "<|reserved_special_token_6|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128015": {
|
| 124 |
+
"content": "<|reserved_special_token_7|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128016": {
|
| 132 |
+
"content": "<|reserved_special_token_8|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128017": {
|
| 140 |
+
"content": "<|reserved_special_token_9|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128018": {
|
| 148 |
+
"content": "<|reserved_special_token_10|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128019": {
|
| 156 |
+
"content": "<|reserved_special_token_11|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128020": {
|
| 164 |
+
"content": "<|reserved_special_token_12|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128021": {
|
| 172 |
+
"content": "<|reserved_special_token_13|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128022": {
|
| 180 |
+
"content": "<|reserved_special_token_14|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128023": {
|
| 188 |
+
"content": "<|reserved_special_token_15|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128024": {
|
| 196 |
+
"content": "<|reserved_special_token_16|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128025": {
|
| 204 |
+
"content": "<|reserved_special_token_17|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128026": {
|
| 212 |
+
"content": "<|reserved_special_token_18|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128027": {
|
| 220 |
+
"content": "<|reserved_special_token_19|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128028": {
|
| 228 |
+
"content": "<|reserved_special_token_20|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128029": {
|
| 236 |
+
"content": "<|reserved_special_token_21|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128030": {
|
| 244 |
+
"content": "<|reserved_special_token_22|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128031": {
|
| 252 |
+
"content": "<|reserved_special_token_23|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128032": {
|
| 260 |
+
"content": "<|reserved_special_token_24|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128033": {
|
| 268 |
+
"content": "<|reserved_special_token_25|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128034": {
|
| 276 |
+
"content": "<|reserved_special_token_26|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128035": {
|
| 284 |
+
"content": "<|reserved_special_token_27|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128036": {
|
| 292 |
+
"content": "<|reserved_special_token_28|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128037": {
|
| 300 |
+
"content": "<|reserved_special_token_29|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128038": {
|
| 308 |
+
"content": "<|reserved_special_token_30|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128039": {
|
| 316 |
+
"content": "<|reserved_special_token_31|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128040": {
|
| 324 |
+
"content": "<|reserved_special_token_32|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128041": {
|
| 332 |
+
"content": "<|reserved_special_token_33|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128042": {
|
| 340 |
+
"content": "<|reserved_special_token_34|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128043": {
|
| 348 |
+
"content": "<|reserved_special_token_35|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128044": {
|
| 356 |
+
"content": "<|reserved_special_token_36|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128045": {
|
| 364 |
+
"content": "<|reserved_special_token_37|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128046": {
|
| 372 |
+
"content": "<|reserved_special_token_38|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128047": {
|
| 380 |
+
"content": "<|reserved_special_token_39|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128048": {
|
| 388 |
+
"content": "<|reserved_special_token_40|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128049": {
|
| 396 |
+
"content": "<|reserved_special_token_41|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128050": {
|
| 404 |
+
"content": "<|reserved_special_token_42|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128051": {
|
| 412 |
+
"content": "<|reserved_special_token_43|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128052": {
|
| 420 |
+
"content": "<|reserved_special_token_44|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128053": {
|
| 428 |
+
"content": "<|reserved_special_token_45|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128054": {
|
| 436 |
+
"content": "<|reserved_special_token_46|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128055": {
|
| 444 |
+
"content": "<|reserved_special_token_47|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128056": {
|
| 452 |
+
"content": "<|reserved_special_token_48|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128057": {
|
| 460 |
+
"content": "<|reserved_special_token_49|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128058": {
|
| 468 |
+
"content": "<|reserved_special_token_50|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128059": {
|
| 476 |
+
"content": "<|reserved_special_token_51|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128060": {
|
| 484 |
+
"content": "<|reserved_special_token_52|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128061": {
|
| 492 |
+
"content": "<|reserved_special_token_53|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128062": {
|
| 500 |
+
"content": "<|reserved_special_token_54|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128063": {
|
| 508 |
+
"content": "<|reserved_special_token_55|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128064": {
|
| 516 |
+
"content": "<|reserved_special_token_56|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128065": {
|
| 524 |
+
"content": "<|reserved_special_token_57|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128066": {
|
| 532 |
+
"content": "<|reserved_special_token_58|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128067": {
|
| 540 |
+
"content": "<|reserved_special_token_59|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128068": {
|
| 548 |
+
"content": "<|reserved_special_token_60|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128069": {
|
| 556 |
+
"content": "<|reserved_special_token_61|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128070": {
|
| 564 |
+
"content": "<|reserved_special_token_62|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128071": {
|
| 572 |
+
"content": "<|reserved_special_token_63|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128072": {
|
| 580 |
+
"content": "<|reserved_special_token_64|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128073": {
|
| 588 |
+
"content": "<|reserved_special_token_65|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128074": {
|
| 596 |
+
"content": "<|reserved_special_token_66|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128075": {
|
| 604 |
+
"content": "<|reserved_special_token_67|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128076": {
|
| 612 |
+
"content": "<|reserved_special_token_68|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128077": {
|
| 620 |
+
"content": "<|reserved_special_token_69|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128078": {
|
| 628 |
+
"content": "<|reserved_special_token_70|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128079": {
|
| 636 |
+
"content": "<|reserved_special_token_71|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128080": {
|
| 644 |
+
"content": "<|reserved_special_token_72|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128081": {
|
| 652 |
+
"content": "<|reserved_special_token_73|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128082": {
|
| 660 |
+
"content": "<|reserved_special_token_74|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128083": {
|
| 668 |
+
"content": "<|reserved_special_token_75|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128084": {
|
| 676 |
+
"content": "<|reserved_special_token_76|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128085": {
|
| 684 |
+
"content": "<|reserved_special_token_77|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128086": {
|
| 692 |
+
"content": "<|reserved_special_token_78|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128087": {
|
| 700 |
+
"content": "<|reserved_special_token_79|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128088": {
|
| 708 |
+
"content": "<|reserved_special_token_80|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128089": {
|
| 716 |
+
"content": "<|reserved_special_token_81|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128090": {
|
| 724 |
+
"content": "<|reserved_special_token_82|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128091": {
|
| 732 |
+
"content": "<|reserved_special_token_83|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128092": {
|
| 740 |
+
"content": "<|reserved_special_token_84|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128093": {
|
| 748 |
+
"content": "<|reserved_special_token_85|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128094": {
|
| 756 |
+
"content": "<|reserved_special_token_86|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128095": {
|
| 764 |
+
"content": "<|reserved_special_token_87|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128096": {
|
| 772 |
+
"content": "<|reserved_special_token_88|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128097": {
|
| 780 |
+
"content": "<|reserved_special_token_89|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128098": {
|
| 788 |
+
"content": "<|reserved_special_token_90|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128099": {
|
| 796 |
+
"content": "<|reserved_special_token_91|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128100": {
|
| 804 |
+
"content": "<|reserved_special_token_92|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128101": {
|
| 812 |
+
"content": "<|reserved_special_token_93|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128102": {
|
| 820 |
+
"content": "<|reserved_special_token_94|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128103": {
|
| 828 |
+
"content": "<|reserved_special_token_95|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128104": {
|
| 836 |
+
"content": "<|reserved_special_token_96|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128105": {
|
| 844 |
+
"content": "<|reserved_special_token_97|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128106": {
|
| 852 |
+
"content": "<|reserved_special_token_98|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128107": {
|
| 860 |
+
"content": "<|reserved_special_token_99|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128108": {
|
| 868 |
+
"content": "<|reserved_special_token_100|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128109": {
|
| 876 |
+
"content": "<|reserved_special_token_101|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128110": {
|
| 884 |
+
"content": "<|reserved_special_token_102|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128111": {
|
| 892 |
+
"content": "<|reserved_special_token_103|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128112": {
|
| 900 |
+
"content": "<|reserved_special_token_104|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128113": {
|
| 908 |
+
"content": "<|reserved_special_token_105|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128114": {
|
| 916 |
+
"content": "<|reserved_special_token_106|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128115": {
|
| 924 |
+
"content": "<|reserved_special_token_107|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128116": {
|
| 932 |
+
"content": "<|reserved_special_token_108|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128117": {
|
| 940 |
+
"content": "<|reserved_special_token_109|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128118": {
|
| 948 |
+
"content": "<|reserved_special_token_110|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128119": {
|
| 956 |
+
"content": "<|reserved_special_token_111|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128120": {
|
| 964 |
+
"content": "<|reserved_special_token_112|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128121": {
|
| 972 |
+
"content": "<|reserved_special_token_113|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128122": {
|
| 980 |
+
"content": "<|reserved_special_token_114|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128123": {
|
| 988 |
+
"content": "<|reserved_special_token_115|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128124": {
|
| 996 |
+
"content": "<|reserved_special_token_116|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128125": {
|
| 1004 |
+
"content": "<|reserved_special_token_117|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128126": {
|
| 1012 |
+
"content": "<|reserved_special_token_118|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128127": {
|
| 1020 |
+
"content": "<|reserved_special_token_119|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128128": {
|
| 1028 |
+
"content": "<|reserved_special_token_120|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128129": {
|
| 1036 |
+
"content": "<|reserved_special_token_121|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128130": {
|
| 1044 |
+
"content": "<|reserved_special_token_122|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128131": {
|
| 1052 |
+
"content": "<|reserved_special_token_123|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128132": {
|
| 1060 |
+
"content": "<|reserved_special_token_124|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128133": {
|
| 1068 |
+
"content": "<|reserved_special_token_125|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128134": {
|
| 1076 |
+
"content": "<|reserved_special_token_126|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128135": {
|
| 1084 |
+
"content": "<|reserved_special_token_127|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128136": {
|
| 1092 |
+
"content": "<|reserved_special_token_128|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128137": {
|
| 1100 |
+
"content": "<|reserved_special_token_129|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128138": {
|
| 1108 |
+
"content": "<|reserved_special_token_130|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128139": {
|
| 1116 |
+
"content": "<|reserved_special_token_131|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128140": {
|
| 1124 |
+
"content": "<|reserved_special_token_132|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128141": {
|
| 1132 |
+
"content": "<|reserved_special_token_133|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128142": {
|
| 1140 |
+
"content": "<|reserved_special_token_134|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128143": {
|
| 1148 |
+
"content": "<|reserved_special_token_135|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128144": {
|
| 1156 |
+
"content": "<|reserved_special_token_136|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128145": {
|
| 1164 |
+
"content": "<|reserved_special_token_137|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128146": {
|
| 1172 |
+
"content": "<|reserved_special_token_138|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128147": {
|
| 1180 |
+
"content": "<|reserved_special_token_139|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128148": {
|
| 1188 |
+
"content": "<|reserved_special_token_140|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128149": {
|
| 1196 |
+
"content": "<|reserved_special_token_141|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128150": {
|
| 1204 |
+
"content": "<|reserved_special_token_142|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128151": {
|
| 1212 |
+
"content": "<|reserved_special_token_143|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128152": {
|
| 1220 |
+
"content": "<|reserved_special_token_144|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128153": {
|
| 1228 |
+
"content": "<|reserved_special_token_145|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128154": {
|
| 1236 |
+
"content": "<|reserved_special_token_146|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128155": {
|
| 1244 |
+
"content": "<|reserved_special_token_147|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128156": {
|
| 1252 |
+
"content": "<|reserved_special_token_148|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128157": {
|
| 1260 |
+
"content": "<|reserved_special_token_149|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128158": {
|
| 1268 |
+
"content": "<|reserved_special_token_150|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128159": {
|
| 1276 |
+
"content": "<|reserved_special_token_151|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128160": {
|
| 1284 |
+
"content": "<|reserved_special_token_152|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128161": {
|
| 1292 |
+
"content": "<|reserved_special_token_153|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128162": {
|
| 1300 |
+
"content": "<|reserved_special_token_154|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128163": {
|
| 1308 |
+
"content": "<|reserved_special_token_155|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128164": {
|
| 1316 |
+
"content": "<|reserved_special_token_156|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128165": {
|
| 1324 |
+
"content": "<|reserved_special_token_157|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128166": {
|
| 1332 |
+
"content": "<|reserved_special_token_158|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128167": {
|
| 1340 |
+
"content": "<|reserved_special_token_159|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128168": {
|
| 1348 |
+
"content": "<|reserved_special_token_160|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128169": {
|
| 1356 |
+
"content": "<|reserved_special_token_161|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128170": {
|
| 1364 |
+
"content": "<|reserved_special_token_162|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128171": {
|
| 1372 |
+
"content": "<|reserved_special_token_163|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128172": {
|
| 1380 |
+
"content": "<|reserved_special_token_164|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128173": {
|
| 1388 |
+
"content": "<|reserved_special_token_165|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128174": {
|
| 1396 |
+
"content": "<|reserved_special_token_166|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128175": {
|
| 1404 |
+
"content": "<|reserved_special_token_167|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128176": {
|
| 1412 |
+
"content": "<|reserved_special_token_168|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128177": {
|
| 1420 |
+
"content": "<|reserved_special_token_169|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128178": {
|
| 1428 |
+
"content": "<|reserved_special_token_170|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128179": {
|
| 1436 |
+
"content": "<|reserved_special_token_171|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128180": {
|
| 1444 |
+
"content": "<|reserved_special_token_172|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128181": {
|
| 1452 |
+
"content": "<|reserved_special_token_173|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128182": {
|
| 1460 |
+
"content": "<|reserved_special_token_174|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128183": {
|
| 1468 |
+
"content": "<|reserved_special_token_175|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128184": {
|
| 1476 |
+
"content": "<|reserved_special_token_176|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128185": {
|
| 1484 |
+
"content": "<|reserved_special_token_177|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128186": {
|
| 1492 |
+
"content": "<|reserved_special_token_178|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128187": {
|
| 1500 |
+
"content": "<|reserved_special_token_179|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128188": {
|
| 1508 |
+
"content": "<|reserved_special_token_180|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128189": {
|
| 1516 |
+
"content": "<|reserved_special_token_181|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128190": {
|
| 1524 |
+
"content": "<|reserved_special_token_182|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128191": {
|
| 1532 |
+
"content": "<|reserved_special_token_183|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128192": {
|
| 1540 |
+
"content": "<|reserved_special_token_184|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128193": {
|
| 1548 |
+
"content": "<|reserved_special_token_185|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128194": {
|
| 1556 |
+
"content": "<|reserved_special_token_186|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128195": {
|
| 1564 |
+
"content": "<|reserved_special_token_187|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128196": {
|
| 1572 |
+
"content": "<|reserved_special_token_188|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128197": {
|
| 1580 |
+
"content": "<|reserved_special_token_189|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128198": {
|
| 1588 |
+
"content": "<|reserved_special_token_190|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128199": {
|
| 1596 |
+
"content": "<|reserved_special_token_191|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128200": {
|
| 1604 |
+
"content": "<|reserved_special_token_192|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128201": {
|
| 1612 |
+
"content": "<|reserved_special_token_193|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128202": {
|
| 1620 |
+
"content": "<|reserved_special_token_194|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128203": {
|
| 1628 |
+
"content": "<|reserved_special_token_195|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128204": {
|
| 1636 |
+
"content": "<|reserved_special_token_196|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128205": {
|
| 1644 |
+
"content": "<|reserved_special_token_197|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128206": {
|
| 1652 |
+
"content": "<|reserved_special_token_198|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128207": {
|
| 1660 |
+
"content": "<|reserved_special_token_199|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128208": {
|
| 1668 |
+
"content": "<|use_tool|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128209": {
|
| 1676 |
+
"content": "<|answer|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128210": {
|
| 1684 |
+
"content": "<|start_img|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128211": {
|
| 1692 |
+
"content": "<|end_img|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128212": {
|
| 1700 |
+
"content": "<|img|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128213": {
|
| 1708 |
+
"content": "<|start_bbox|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128214": {
|
| 1716 |
+
"content": "<|end_bbox|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128215": {
|
| 1724 |
+
"content": "<|start_categ|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128216": {
|
| 1732 |
+
"content": "<|end_categ|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128217": {
|
| 1740 |
+
"content": "<|reserved_special_token_209|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128218": {
|
| 1748 |
+
"content": "<|reserved_special_token_210|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128219": {
|
| 1756 |
+
"content": "<|reserved_special_token_211|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128220": {
|
| 1764 |
+
"content": "<|reserved_special_token_212|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128221": {
|
| 1772 |
+
"content": "<|reserved_special_token_213|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128222": {
|
| 1780 |
+
"content": "<|reserved_special_token_214|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128223": {
|
| 1788 |
+
"content": "<|reserved_special_token_215|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128224": {
|
| 1796 |
+
"content": "<|reserved_special_token_216|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128225": {
|
| 1804 |
+
"content": "<|reserved_special_token_217|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128226": {
|
| 1812 |
+
"content": "<|reserved_special_token_218|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128227": {
|
| 1820 |
+
"content": "<|reserved_special_token_219|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128228": {
|
| 1828 |
+
"content": "<|reserved_special_token_220|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128229": {
|
| 1836 |
+
"content": "<|reserved_special_token_221|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128230": {
|
| 1844 |
+
"content": "<|reserved_special_token_222|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128231": {
|
| 1852 |
+
"content": "<|reserved_special_token_223|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128232": {
|
| 1860 |
+
"content": "<|reserved_special_token_224|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128233": {
|
| 1868 |
+
"content": "<|reserved_special_token_225|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128234": {
|
| 1876 |
+
"content": "<|reserved_special_token_226|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128235": {
|
| 1884 |
+
"content": "<|reserved_special_token_227|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128236": {
|
| 1892 |
+
"content": "<|reserved_special_token_228|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128237": {
|
| 1900 |
+
"content": "<|reserved_special_token_229|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128238": {
|
| 1908 |
+
"content": "<|reserved_special_token_230|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128239": {
|
| 1916 |
+
"content": "<|reserved_special_token_231|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128240": {
|
| 1924 |
+
"content": "<|reserved_special_token_232|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128241": {
|
| 1932 |
+
"content": "<|reserved_special_token_233|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128242": {
|
| 1940 |
+
"content": "<|reserved_special_token_234|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128243": {
|
| 1948 |
+
"content": "<|reserved_special_token_235|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128244": {
|
| 1956 |
+
"content": "<|reserved_special_token_236|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128245": {
|
| 1964 |
+
"content": "<|reserved_special_token_237|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128246": {
|
| 1972 |
+
"content": "<|reserved_special_token_238|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128247": {
|
| 1980 |
+
"content": "<|reserved_special_token_239|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128248": {
|
| 1988 |
+
"content": "<|reserved_special_token_240|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128249": {
|
| 1996 |
+
"content": "<|reserved_special_token_241|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128250": {
|
| 2004 |
+
"content": "<|reserved_special_token_242|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128251": {
|
| 2012 |
+
"content": "<|reserved_special_token_243|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128252": {
|
| 2020 |
+
"content": "<|reserved_special_token_244|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128253": {
|
| 2028 |
+
"content": "<|reserved_special_token_245|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128254": {
|
| 2036 |
+
"content": "<|reserved_special_token_246|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128255": {
|
| 2044 |
+
"content": "<|reserved_special_token_247|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
}
|
| 2051 |
+
},
|
| 2052 |
+
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
| 2054 |
+
"clean_up_tokenization_spaces": true,
|
| 2055 |
+
"eos_token": "<|eot_id|>",
|
| 2056 |
+
"model_input_names": [
|
| 2057 |
+
"input_ids",
|
| 2058 |
+
"attention_mask"
|
| 2059 |
+
],
|
| 2060 |
+
"model_max_length": 131072,
|
| 2061 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 2062 |
+
}
|