Vfrz nielsr HF Staff commited on
Commit
250fc19
·
verified ·
1 Parent(s): db39af1

Improve model card: Add metadata, abstract, GitHub link, and usage example (#1)

Browse files

- Improve model card: Add metadata, abstract, GitHub link, and usage example (e87dae3bde0b037dbfb1407f0e5349f5620a1b93)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +61 -10
README.md CHANGED
@@ -1,27 +1,78 @@
1
  ---
2
- license: apache-2.0
 
3
  datasets:
4
  - MegaScience/MegaScience
5
  language:
6
  - en
 
7
  metrics:
8
  - accuracy
9
- base_model:
10
- - Qwen/Qwen3-8B-Base
11
  pipeline_tag: text-generation
 
 
 
 
 
 
 
12
  ---
 
13
  # [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
14
 
 
 
 
 
 
 
 
 
15
  ## Qwen3-8B-MegaScience
16
 
17
  ### Training Recipe
18
 
19
- - **LR**: 5e-6
20
- - **LR Schedule**: Cosine
21
- - **Batch Size**: 512
22
- - **Max Length**: 4,096
23
- - **Warm Up Ratio**: 0.05
24
- - **Epochs**: 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ### Evaluation Results
27
 
@@ -51,4 +102,4 @@ Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you
51
  journal={arXiv preprint arXiv:2507.16812},
52
  url={https://arxiv.org/abs/2507.16812}
53
  }
54
- ```
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen3-8B-Base
4
  datasets:
5
  - MegaScience/MegaScience
6
  language:
7
  - en
8
+ license: apache-2.0
9
  metrics:
10
  - accuracy
 
 
11
  pipeline_tag: text-generation
12
+ library_name: transformers
13
+ tags:
14
+ - qwen
15
+ - science
16
+ - scientific-reasoning
17
+ - causal-lm
18
+ - instruction-tuning
19
  ---
20
+
21
  # [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
22
 
23
+ This repository hosts the **Qwen3-8B-MegaScience** model, a key component of the research presented in the paper "MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning".
24
+
25
+ ## Abstract
26
+ Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.
27
+
28
+ ## Code
29
+ The official implementation and full codebase are available on the [MegaScience GitHub repository](https://github.com/GAIR-NLP/lm-open-science-evaluation).
30
+
31
  ## Qwen3-8B-MegaScience
32
 
33
  ### Training Recipe
34
 
35
+ - **LR**: 5e-6
36
+ - **LR Schedule**: Cosine
37
+ - **Batch Size**: 512
38
+ - **Max Length**: 4,096
39
+ - **Warm Up Ratio**: 0.05
40
+ - **Epochs**: 3
41
+
42
+ ### Usage
43
+
44
+ You can load the model and tokenizer using the `transformers` library and perform text generation. For Qwen models, it is often recommended to use the `apply_chat_template` method for instruction-following tasks.
45
+
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+ import torch
49
+
50
+ model_id = "MegaScience/Qwen3-8B-MegaScience"
51
+
52
+ # Load model with bfloat16 for better performance on compatible GPUs
53
+ # or use torch.float16 if bfloat16 is not supported
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ model_id,
56
+ torch_dtype=torch.bfloat16,
57
+ device_map="auto" # Automatically maps model to available devices (e.g., GPU)
58
+ )
59
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
60
+
61
+ # Example for chat completion
62
+ messages = [
63
+ {"role": "user", "content": "Explain Newton's first law of motion in simple terms."},
64
+ ]
65
+
66
+ input_ids = tokenizer.apply_chat_template(
67
+ messages,
68
+ tokenize=True,
69
+ add_generation_prompt=True, # Important for instruction-tuned models
70
+ return_tensors="pt"
71
+ ).to(model.device)
72
+
73
+ outputs = model.generate(input_ids, max_new_tokens=256, do_sample=True, temperature=0.7)
74
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
75
+ ```
76
 
77
  ### Evaluation Results
78
 
 
102
  journal={arXiv preprint arXiv:2507.16812},
103
  url={https://arxiv.org/abs/2507.16812}
104
  }
105
+ ```