Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
import joblib
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
CORS(app)
|
9 |
+
|
10 |
+
# In Spaces, files are in the same directory
|
11 |
+
model = joblib.load('alumni_match_model.joblib')
|
12 |
+
model_columns = joblib.load('model_feature_columns.joblib')
|
13 |
+
|
14 |
+
@app.route('/', methods=['POST'])
|
15 |
+
def handler():
|
16 |
+
incoming_data = request.get_json()
|
17 |
+
df = pd.DataFrame([incoming_data])
|
18 |
+
|
19 |
+
def count_common_skills(row):
|
20 |
+
viewer_skills = set(str(row.get('viewer_skills', '')).lower().split('|'))
|
21 |
+
target_skills = set(str(row.get('target_skills', '')).lower().split('|'))
|
22 |
+
return len(viewer_skills.intersection(target_skills))
|
23 |
+
|
24 |
+
df['common_skills_count'] = df.apply(count_common_skills, axis=1)
|
25 |
+
df['branch_match'] = (df['viewer_branch'].str.lower() == df['target_branch'].str.lower()).astype(int)
|
26 |
+
|
27 |
+
for col in model_columns:
|
28 |
+
if col.startswith('company_'):
|
29 |
+
df[col] = 0
|
30 |
+
|
31 |
+
company_name = incoming_data.get('target_company', '')
|
32 |
+
if company_name:
|
33 |
+
company_col_name = f"company_{company_name}"
|
34 |
+
if company_col_name in df.columns:
|
35 |
+
df[company_col_name] = 1
|
36 |
+
|
37 |
+
final_df = df[model_columns]
|
38 |
+
prediction_proba = model.predict_proba(final_df)
|
39 |
+
match_probability = prediction_proba[0][1]
|
40 |
+
final_score = round(match_probability * 10)
|
41 |
+
|
42 |
+
return jsonify({'score': final_score})
|