--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: biobert-v1.1-text-classifier-corpus-ptc results: [] --- # biobert-v1.1-text-classifier-corpus-ptc This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9958 - Precision: 0.6688 - Recall: 0.6721 - Accuracy: 0.6719 - F1: 0.6676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | No log | 1.0 | 353 | 0.9151 | 0.5844 | 0.6236 | 0.6237 | 0.5781 | | 0.9769 | 2.0 | 706 | 0.8475 | 0.6472 | 0.6592 | 0.6591 | 0.6506 | | 0.6697 | 3.0 | 1059 | 0.8897 | 0.6657 | 0.6735 | 0.6740 | 0.6659 | | 0.6697 | 4.0 | 1412 | 0.9515 | 0.6665 | 0.6769 | 0.6768 | 0.6690 | | 0.463 | 5.0 | 1765 | 0.9958 | 0.6688 | 0.6721 | 0.6719 | 0.6676 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2