Update README.md
Browse files
README.md
CHANGED
@@ -74,59 +74,47 @@ predicted_class = torch.argmax(logits, dim=1)
|
|
74 |
|
75 |
|
76 |
## Training Details
|
77 |
-
# Training Data:
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
๋ผ๋ฒจ: ์ฃผ์ ์๋ฌผ ๋ฐ ์์ ํด๋์ค
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
Carbon Emissions: ์ฝ 50 kg CO2e (ML CO2 ๊ณ์ฐ๊ธฐ ๊ธฐ๋ฐ ์ถ์ฐ)
|
112 |
-
|
113 |
-
Citation
|
114 |
-
bibtex
|
115 |
-
๋ณต์ฌ
|
116 |
-
@article{liu2022convnext,
|
117 |
-
title={ConvNeXt: A ConvNet for the 2020s},
|
118 |
-
author={Liu, Zhuang and Mao, Han and Wu, Chao and Feichtenhofer, Christoph and Darrell, Trevor and Xie, Saining},
|
119 |
-
journal={arXiv preprint arXiv:2201.03545},
|
120 |
-
year={2022}
|
121 |
}
|
122 |
-
Glossary
|
123 |
-
๋ค์ค๋ถ๊ด ์์(Multispectral Imagery): ์ฌ๋ฌ ํ์ฅ๋์ ๋น์ ๋ถ๋ฆฌํ์ฌ ์ดฌ์ํ ์์์ผ๋ก, ์๋ฌผ์ ์์ก ์ํ ๋ถ์ ๋ฑ์ ํ์ฉ๋จ
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
|
|
|
|
128 |
|
129 |
-
Model Card Authors
|
130 |
-
AI Research Team, Your Organization
|
131 |
|
132 | |
|
|
|
74 |
|
75 |
|
76 |
## Training Details
|
|
|
77 |
|
78 |
+
- **Training Data:**
|
79 |
+
- ๋๋ก ๋ฐ ์์ฑ ์ดฌ์ ๋ค์ค๋ถ๊ด(5๋ฐด๋) ์ด๋ฏธ์ง ๋ฐ์ดํฐ์
|
80 |
+
- ๋ผ๋ฒจ: ์ฃผ์ ์๋ฌผ ๋ฐ ์์ ํด๋์ค
|
81 |
+
- **Training Procedure:**
|
82 |
+
- ํ์ธํ๋: facebook/convnext-tiny-224 ๊ธฐ๋ฐ
|
83 |
+
- ์ํญ์: 30
|
84 |
+
- ๋ฐฐ์น์ฌ์ด์ฆ: 32
|
85 |
+
- ์ตํฐ๋ง์ด์ : AdamW
|
86 |
+
- ํ์ต๋ฅ : 1e-4, Cosine Annealing ์ค์ผ์ค๋ฌ ์ฌ์ฉ
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
|
90 |
+
- **Testing Data:** ๋ณ๋ ๋ณด์ ํ ๊ฒ์ฆ์ฉ ๋ค์ค๋ถ๊ด ์ด๋ฏธ์ง์
|
91 |
+
- **Metrics:** ์ ํ๋(Accuracy), F1-Score
|
92 |
+
- **Performance:**
|
93 |
+
- Accuracy: 92.3%
|
94 |
+
- F1-Score: 0.91
|
95 |
+
|
96 |
+
## Environmental Impact
|
97 |
+
|
98 |
+
- **Hardware:** NVIDIA RTX 3090 GPU
|
99 |
+
- **Training Duration:** ์ฝ 40์๊ฐ
|
100 |
+
- **Carbon Emissions:** ์ฝ 50 kg CO2e (ML CO2 ๊ณ์ฐ๊ธฐ ๊ธฐ๋ฐ ์ถ์ฐ)
|
101 |
+
|
102 |
+
## Citation
|
103 |
+
|
104 |
+
@article{liu2022convnext,
|
105 |
+
title={ConvNeXt: A ConvNet for the 2020s},
|
106 |
+
author={Liu, Zhuang and Mao, Han and Wu, Chao and Feichtenhofer, Christoph and Darrell, Trevor and Xie, Saining},
|
107 |
+
journal={arXiv preprint arXiv:2201.03545},
|
108 |
+
year={2022}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
}
|
|
|
|
|
110 |
|
111 |
+
## Glossary
|
112 |
|
113 |
+
- **๋ค์ค๋ถ๊ด ์์(Multispectral Imagery):** ์ฌ๋ฌ ํ์ฅ๋์ ๋น์ ๋ถ๋ฆฌํ์ฌ ์ดฌ์ํ ์์์ผ๋ก, ์๋ฌผ์ ์์ก ์ํ ๋ถ์ ๋ฑ์ ํ์ฉ๋จ
|
114 |
+
- **ConvNeXt:** ํ๋์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ์ถ ์ปจ๋ณผ๋ฃจ์
์ ๊ฒฝ๋ง(CNN)
|
115 |
+
- **F1-Score:** ์ ๋ฐ๋์ ์ฌํ์จ์ ์กฐํํ๊ท , ๋ถ๊ท ํ ๋ฐ์ดํฐ ํ๊ฐ์ ํจ๊ณผ์
|
116 |
|
117 |
+
## Model Card Authors
|
|
|
118 |
|
119 |
+
- AI Research Team, Your Organization
|
120 |