Delete handler.py
Browse files- handler.py +0 -59
handler.py
DELETED
|
@@ -1,59 +0,0 @@
|
|
| 1 |
-
from typing import Any, Dict, List
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
-
import torch
|
| 4 |
-
|
| 5 |
-
MAX_INPUT_LENGTH = 256
|
| 6 |
-
MAX_OUTPUT_LENGTH = 128
|
| 7 |
-
|
| 8 |
-
class EndpointHandler:
|
| 9 |
-
def __init__(self, model_dir: str = "", **kwargs: Any) -> None:
|
| 10 |
-
"""
|
| 11 |
-
Initializes the model and tokenizer when the endpoint starts.
|
| 12 |
-
"""
|
| 13 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 14 |
-
# Assuming you fine-tuned CodeT5+ for a sequence-to-sequence task
|
| 15 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
|
| 16 |
-
self.model.eval() # Set model to evaluation mode
|
| 17 |
-
# You might want to move the model to GPU if available
|
| 18 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
-
self.model.to(self.device)
|
| 20 |
-
|
| 21 |
-
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 22 |
-
"""
|
| 23 |
-
Handles incoming inference requests.
|
| 24 |
-
"""
|
| 25 |
-
inputs = data.get("inputs")
|
| 26 |
-
if not inputs:
|
| 27 |
-
raise ValueError("No 'inputs' found in the request data.")
|
| 28 |
-
|
| 29 |
-
# Ensure inputs are in a list for batch processing, even if single input
|
| 30 |
-
if isinstance(inputs, str):
|
| 31 |
-
inputs = [inputs]
|
| 32 |
-
|
| 33 |
-
# Pre-processing
|
| 34 |
-
# Adjust max_length and padding based on your model's training and task
|
| 35 |
-
tokenized_inputs = self.tokenizer(
|
| 36 |
-
inputs,
|
| 37 |
-
max_length=MAX_INPUT_LENGTH,
|
| 38 |
-
padding=True,
|
| 39 |
-
truncation=True,
|
| 40 |
-
return_tensors="pt"
|
| 41 |
-
).to(self.device)
|
| 42 |
-
|
| 43 |
-
# Inference
|
| 44 |
-
with torch.no_grad():
|
| 45 |
-
outputs = self.model.generate(
|
| 46 |
-
tokenized_inputs["input_ids"],
|
| 47 |
-
attention_mask=tokenized_inputs["attention_mask"],
|
| 48 |
-
# Add generation arguments relevant to your task (e.g., max_length, num_beams)
|
| 49 |
-
max_length=MAX_OUTPUT_LENGTH, # Example, adjust as needed
|
| 50 |
-
num_beams=8, # Example, adjust as needed
|
| 51 |
-
no_repeat_ngram_size=3,
|
| 52 |
-
pad_token_id=self.tokenizer.pad_token_id) # Fixed: Added self. before tokenizer
|
| 53 |
-
|
| 54 |
-
# Post-processing
|
| 55 |
-
decoded_outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 56 |
-
|
| 57 |
-
# Format the output as a list of dictionaries
|
| 58 |
-
results = [{"generated_text": text} for text in decoded_outputs]
|
| 59 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|