Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- Mir-2002/python-google-style-docstrings
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
+
- rouge
|
9 |
+
base_model:
|
10 |
+
- Salesforce/codet5p-220m-bimodal
|
11 |
+
pipeline_tag: summarization
|
12 |
+
tags:
|
13 |
+
- code
|
14 |
+
---
|
15 |
+
|
16 |
+
# Overview
|
17 |
+
|
18 |
+
This is a fine tuned CodeT5+ (220m) bimodal model tuned on a dataset consisting of 59,000 Python code-docstring pairs. The docstrings are in Google style format.
|
19 |
+
A google style docstring is formatted as follows:
|
20 |
+
```
|
21 |
+
<Description of the code>
|
22 |
+
|
23 |
+
Args:
|
24 |
+
<var1> (<data-type>) : <description of var1>
|
25 |
+
<var2> (<data_type>) : <description of var2>
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
<var3> (<data-type>) : <description of var3>
|
29 |
+
|
30 |
+
Raises:
|
31 |
+
<var4> (<data-type>) : <description of var4>
|
32 |
+
```
|
33 |
+
|
34 |
+
For more information on my dataset, please see the included referenced dataset.
|
35 |
+
|
36 |
+
# Hyperparameters
|
37 |
+
|
38 |
+
MAX_SOURCE_LENGTH = 256
|
39 |
+
MAX_TARGET_LENGTH = 128
|
40 |
+
BATCH_SIZE = 16
|
41 |
+
NUM_EPOCHS = 35
|
42 |
+
LEARNING_RATE = 3e-5
|
43 |
+
GRADIENT_ACCUMULATION_STEPS = 4
|
44 |
+
EARLY_STOPPING_PATIENCE = 2
|
45 |
+
WEIGHT_DECAY = 0.01
|
46 |
+
OPTIMIZER = ADAFACTOR
|
47 |
+
LR_SCHEDULER = LINEAR
|
48 |
+
|
49 |
+
# Loss
|
50 |
+
|
51 |
+
On the 35th epoch, the model achieved the following loss:
|
52 |
+
|
53 |
+
Epoch Training Loss Validation Loss
|
54 |
+
26 1.001400 1.288712
|
55 |
+
27 0.983600 1.284895
|
56 |
+
28 0.961300 1.277680
|
57 |
+
29 0.940600 1.275018
|
58 |
+
30 0.933600 1.275621
|
59 |
+
31 0.918200 1.270074
|
60 |
+
32 0.904700 1.268874
|
61 |
+
33 0.908800 1.268534
|
62 |
+
34 0.900600 1.268240
|
63 |
+
*35* *0.894800* *1.268536*
|
64 |
+
|
65 |
+
# BLEU and ROUGE Scores
|
66 |
+
|
67 |
+
==================================================
|
68 |
+
EVALUATION RESULTS
|
69 |
+
==================================================
|
70 |
+
BLEU Score: 0.3540
|
71 |
+
ROUGE-1: 0.5855
|
72 |
+
ROUGE-2: 0.3946
|
73 |
+
ROUGE-L: 0.5243
|