--- datasets: - Mir-2002/python-google-style-docstrings language: - en metrics: - bleu - rouge base_model: - Salesforce/codet5p-220m-bimodal pipeline_tag: summarization tags: - code --- # Overview This is a fine tuned CodeT5+ (220m) bimodal model tuned on a dataset consisting of 59,000 Python code-docstring pairs. The docstrings are in Google style format. A google style docstring is formatted as follows: ``` Args: () : () : Returns: () : Raises: () : ``` For more information on my dataset, please see the included referenced dataset. # Hyperparameters MAX_SOURCE_LENGTH = 256 MAX_TARGET_LENGTH = 128 BATCH_SIZE = 16 NUM_EPOCHS = 35 LEARNING_RATE = 3e-5 GRADIENT_ACCUMULATION_STEPS = 4 EARLY_STOPPING_PATIENCE = 2 WEIGHT_DECAY = 0.01 OPTIMIZER = ADAFACTOR LR_SCHEDULER = LINEAR # Loss On the 35th epoch, the model achieved the following loss: Epoch Training Loss Validation Loss 26 1.001400 1.288712 27 0.983600 1.284895 28 0.961300 1.277680 29 0.940600 1.275018 30 0.933600 1.275621 31 0.918200 1.270074 32 0.904700 1.268874 33 0.908800 1.268534 34 0.900600 1.268240 *35* *0.894800* *1.268536* # BLEU and ROUGE Scores ================================================== EVALUATION RESULTS ================================================== BLEU Score: 0.3540 ROUGE-1: 0.5855 ROUGE-2: 0.3946 ROUGE-L: 0.5243