--- library_name: transformers license: apache-2.0 base_model: distilbert-base-german-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-german-finetuned-ner-v1 results: [] --- # distilbert-german-finetuned-ner-v1 This model is a fine-tuned version of [distilbert-base-german-cased](https://huggingface.co/distilbert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Precision: 0.9987 - Recall: 0.9982 - F1: 0.9984 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0207 | 1.0 | 1000 | 0.0051 | 0.9944 | 0.9960 | 0.9952 | 0.9986 | | 0.0048 | 2.0 | 2000 | 0.0012 | 0.9989 | 0.9984 | 0.9987 | 0.9996 | | 0.0019 | 3.0 | 3000 | 0.0012 | 0.9987 | 0.9982 | 0.9984 | 0.9997 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1