--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: cat_dog_classifier_with_small_datasest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.95 --- # cat_dog_classifier_with_small_datasest This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1369 - Accuracy: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 70 | 0.5422 | 0.8571 | | No log | 2.0 | 140 | 0.5221 | 0.8786 | | No log | 3.0 | 210 | 0.4977 | 0.8571 | | No log | 4.0 | 280 | 0.4617 | 0.8786 | | No log | 5.0 | 350 | 0.3932 | 0.9143 | | No log | 6.0 | 420 | 0.3411 | 0.9143 | | No log | 7.0 | 490 | 0.2884 | 0.9143 | | 0.4971 | 8.0 | 560 | 0.2429 | 0.9286 | | 0.4971 | 9.0 | 630 | 0.2151 | 0.9429 | | 0.4971 | 10.0 | 700 | 0.1962 | 0.9286 | | 0.4971 | 11.0 | 770 | 0.1727 | 0.9357 | | 0.4971 | 12.0 | 840 | 0.1676 | 0.95 | | 0.4971 | 13.0 | 910 | 0.1764 | 0.9286 | | 0.4971 | 14.0 | 980 | 0.1565 | 0.9429 | | 0.2878 | 15.0 | 1050 | 0.1578 | 0.9429 | | 0.2878 | 16.0 | 1120 | 0.1577 | 0.9429 | | 0.2878 | 17.0 | 1190 | 0.1393 | 0.9429 | | 0.2878 | 18.0 | 1260 | 0.1472 | 0.9429 | | 0.2878 | 19.0 | 1330 | 0.1315 | 0.95 | | 0.2878 | 20.0 | 1400 | 0.1369 | 0.95 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0